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The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation,
rSC ) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of
neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and
Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However,
neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from
multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons
in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual
stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention
conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus
direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed
pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive
nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural
computations performed across cortical areas.
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Introduction
The extent to which trial-to-trial variability is shared between
pairs of neurons in the same cortical area (termed spike count or
noise correlation, or rSC) has been used for the past two decades

to infer properties of local circuits and to understand the compu-
tations performed by groups of neurons (for review, see Cohen
and Kohn, 2011). In visual cortex, the way that rSC depends on
stimulus and cognitive factors is remarkably consistent across
studies, brain areas, and tasks (for review, see Cohen and Kohn,
2011). For example, spike count correlations between pairs of
neurons in primary visual cortex (V1) do not depend on the
orientation of the stimulus (Kohn and Smith, 2005), and corre-
lations between pairs of neurons in the middle temporal area
(MT) do not depend on the direction of the stimulus (Huang and
Lisberger, 2009), even though those stimulus factors strongly af-
fect mean firing rate. Paying attention to the joint receptive fields
of neurons in the same visual cortical area has been associated
with decreases in rSC in several cortical areas and studies (Cohen
and Maunsell, 2009, 2011; Mitchell et al., 2009; Zénon and
Krauzlis, 2012; Herrero et al., 2013; Gregoriou et al., 2014; Ruff
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Significance Statement

Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems
neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultane-
ously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli
in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention
conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was pre-
dicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain
models of the neural computations performed across cortical areas.
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and Cohen, 2014a; Luo and Maunsell, 2015). An appealing hy-
pothesis is that the consistency of the way stimulus and cognitive
factors affect correlated variability in different areas could imply
the existence of canonical computations performed across visual
cortex (for review, see Carandini and Heeger, 2012).

However, there are both anatomical and functional reasons to
think that the way correlations between pairs of neurons in dif-
ferent cortical areas depend on stimuli and cognitive factors
might be different than for correlations between pairs of neurons
in the same area. The anatomy and patterns of connectivity be-
tween neurons in different cortical areas is very different than
connectivity within a cortical area (Maunsell and van Essen,
1983; Ungerleider and Desimone, 1986). These differences likely
cause differences in patterns of correlations within and across
cortical areas. Furthermore, sensory and cognitive processes
likely involve the coordinated activity of neurons in many brain
areas. For example, neurons in both V1 and MT respond to mov-
ing stimuli and are important for motion perception (Parker and
Newsome, 1998; Born and Bradley, 2005). One possibility is that
motion perception is based on the combined responses of all
motion selective neurons, regardless of which area they come
from. Alternatively, perception may involve computations that
take into account the boundaries between areas (e.g., feedforward
computations).

We reasoned that these possibilities might be distinguished by
determining whether rSC between pairs of neurons in different cor-
tical areas depends on stimuli and task conditions in the same way as
rSC within the same cortical area. We recorded simultaneously from
neurons in V1 and MT and found that rSC between areas depends on
many stimulus factors that do not affect correlations within an area.
Combined with our finding that attention has opposite effects on
correlations within and across areas (Ruff and Cohen, 2016), these
findings suggest that the neural computations that give rise to per-
ception treat neurons differently depending on which area they
come from. We found that both the stimulus and attention de-

pendence of rSC between areas can be explained by a model of
divisive normalization in which V1 provides feedforward in-
puts to MT that are passed through a divisive nonlinearity.
Together, our results provide insight into interactions be-
tween neurons in different areas and provide a framework for
using correlated variability to probe the computations per-
formed by networks of neurons across the brain.

Materials and Methods
Electrophysiological recordings. A subset of these data (from 2 of 10 stim-
ulus/attention conditions, which allowed us to measure attention-related
correlations between V1 and MT) are presented elsewhere (Ruff and
Cohen, 2016). The subjects in this experiment were two adult male rhe-
sus monkeys (Macaca mulatta, 8 and 9 kg). All animal procedures were
approved by the Institutional Animal Care and Use Committees of the
University of Pittsburgh and Carnegie Mellon University. Before behav-
ioral training, we implanted each animal with a titanium head post. After
the animal learned the task (4 –5 months), we implanted a 10 � 10
microelectrode array (Blackrock Microsystems) in area V1 and a record-
ing chamber that gave us access to area MT. The V1 array was connected
to a percutaneous connector that allowed simultaneous recordings from
96 electrodes. The distance between adjacent electrodes on the array was
400 �m, and each electrode was 1 mm long. We identified area V1 using
stereotactic coordinates and by visually inspecting the sulci. During each
recording session, we inserted a single electrode (Fred Haer) into area
MT. We identified MT using stereotactic coordinates, gray and white
matter transitions, and receptive field properties.

We recorded neuronal activity from V1 and MT simultaneously during
daily experimental sessions for several months in each animal. We included
recording sessions for analysis when the MT unit’s receptive field largely
overlapped the envelope of receptive fields of the units we recorded on the V1
array (Fig. 1A) and when the animal completed at least 150 behavioral trials
(mean, 648 completed trials from 32 recording sessions; 12 from Monkey 1
and 20 from Monkey 2). We optimized the direction and speed of the visual
stimuli for the tuning properties of the MT unit.

To measure correlations between pairs of MT units (as in Fig. 2), in a
subset of experiments, we recorded using a movable 24 channel probe
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Figure 1. Recording and psychophysical methods. A, Receptive fields from an example experimental session. We recorded simultaneously from a 96 channel chronically implanted microelectrode
array in area V1 and a single electrode in area MT. We selected MT units whose receptive fields (black dashed circle) overlapped the envelope of receptive fields of the units we recorded in V1 (centers
denoted by the gray dots). The locations and approximate sizes of the three visual stimuli are denoted by the solid black circles. Spatial receptive fields were estimated by rapidly presenting a single,
small Gabor patch at a range of locations while the monkey fixated. B, Schematic of the motion direction change detection task. Once the monkey fixated a central spot, either two or three small
Gabor stimuli synchronously flashed on for 200 ms and off for a randomized 200 – 400 ms period. Two of the stimuli were positioned inside the joint receptive fields of the V1 and MT neurons we
recorded, and the third, when present, was placed in the opposite hemifield. After an unsignaled and randomized number of stimulus presentations (picked from an exponential distribution;
minimum, 2 stimulus presentations; mean, 6 stimulus presentations; maximum, 14 stimulus presentations), the direction of one of the stimuli changed. The monkeys were cued in blocks of 50 –100
trials to detect changes in (and therefore attend to) one of the stimuli and ignore motion direction changes in the other stimulus. The monkeys were rewarded for making a saccade to the attended
stimulus within 500 ms of the stimulus change. Responses to distractor changes were never rewarded. The two stimuli within the receptive field moved in opposite directions (the preferred and null
directions of the MT cell under study), and which of the two stimuli moved in the preferred direction varied randomly from trial to trial. The stimulus in the opposite hemifield moved in a direction
that was orthogonal to the MT neuron’s preferred direction. We assessed the stimulus dependence of rSC on trials in which attention was directed to the stimulus in the opposite hemifield as the
receptive fields of the neurons we recorded (for the stimulus conditions we recorded, see Fig. 3), and we assessed attention by comparing rSC on blocks of trials when attention was directed to one
of the two stimuli within the MT neuron’s receptive fields.
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(Alpha Omega or Plexon). This data set consisted of a total of 652 MT
units recorded during 32 recording sessions (mean, 20.4 units per re-
cording session). These data were not included in the normalization
model (see below, Normalization model of MT responses) because we
did not record V1 activity simultaneously.

Visual stimuli and behavior. We presented visual stimuli using custom
software (written in Matlab using the Psychophysics Toolbox; Brainard,
1997; Pelli, 1997) on a CRT monitor (calibrated to linearize intensity;
1024 � 768 pixels; 120 Hz refresh rate) placed 57 cm from the animal. We
monitored eye position using an infrared eye tracker (Eyelink 1000, SR
Research) and recorded eye position and pupil diameter (1000 samples/
s), neuronal responses (30,000 samples/s), and the signal from a photo-
diode to align neuronal responses to stimulus presentation times (30,000
samples/s) using hardware from Ripple.

The monkeys performed a motion direction change detection task
(Fig. 1B). A trial began when the monkey fixated a small spot within a 1°
square fixation window in the center of the video display. Monkeys typ-
ically maintained fixation within a much smaller window than was
allotted (the median SD of eye position during analyzed stimulus presen-
tations was 0.18°). Stimulus presentations when we detected a microsac-
cade were excluded from our analyses (see below, Data analysis). The
visual stimuli were achromatic Gabor patches whose size and location
were picked so that two stimuli lay within the receptive field of a single
MT unit under study (Fig. 1A). These two stimuli were approximately
equidistant from the fixation spot (their distances from the fixation never
differed by �0.3°). The stimuli were centered �2.5–3.5° eccentric (me-
dian, 2.9°), and each stimulus typically subtended �1° of visual angle.
The visual stimuli flashed on for 200 ms and off for an interval that was
randomly selected from a uniform distribution whose range was 200 –
400 ms. The stimuli drifted at the same speed, which was selected from a
range between 6 and 12° per second (picked to elicit large responses in the
MT unit). The two stimuli within the receptive field of the MT unit
moved in opposite directions (the preferred and null directions of the
MT cell under study), and which of the two stimuli moved in the pre-
ferred direction varied randomly from trial to trial.

During blocks of trials when the animal was cued to attend to one of
the two stimuli in the MT receptive field, both stimuli presented at either
8% contrast or 100% contrast, and their contrast was randomly inter-

leaved on each stimulus presentation. In separate blocks of trials, the
animal was instructed to direct its attention to a third stimulus in the
opposite hemifield (“attend opposite” blocks; see Fig. 1B). In these blocks
of trials, the two stimuli in the MT receptive field were independently
presented at 0, 50, or 100% contrast. The third, attended stimulus was
presented at either 8 or 100% contrast, with its contrast randomly inter-
leaved on each stimulus presentation and independently selected from
the contrasts of the stimuli in the MT receptive field. When the third
stimulus was present, it moved in an orthogonal direction to those in the
opposite hemifield.

After an unsignaled number of stimulus presentations picked from an
exponential distribution (minimum, 2 stimulus presentations; mean, 6
stimuli; maximum 14 stimuli), the direction of one of the stimuli
changed. During each experimental session, we selected a single magni-
tude of the direction change designed to get the animal to perform near
psychophysical threshold (range, 10 – 45°). The probability of direction
change was independent at each location (the unattended stimuli each
changed on �12% of trials). Before the start of each block of trials, the
monkey performed 5–10 instruction trials (which were not included in
any of the analyses) in which there was only a single stimulus. The loca-
tion of this stimulus constituted a cue as to the attended location. In the
upcoming block of trials, if the attended stimulus was the one that
changed, the monkey was given a liquid reward for making a saccade to
that stimulus within 500 ms of the change. To account for saccadic la-
tency and to avoid rewarding the monkey for guessing, the monkey was
rewarded only for saccades beginning at least 100 ms after the change. If
no saccade occurred within 500 ms of the direction change at the cued
location, the trial was classified as a miss and terminated with no reward.
If no change occurred within the maximum 14 stimulus presentations,
the monkey was rewarded simply for maintaining fixation. Attention was
cued to one of the three stimulus locations in blocks of 50 –100 trials. The
monkey was never rewarded for making a saccade to distractor changes.

Overall, the monkeys correctly detected the stimulus changes on 66%
of completed trials during the 32 experimental sessions where we col-
lected neuronal data from both V1 and MT. When alternating attention
between two stimuli placed within the receptive field of the MT unit, the
monkeys detected 90% of the full-contrast direction changes and 42% of
the low-contrast direction changes that occurred at the attended loca-
tion. The monkeys responded to 21% of the unattended orientation
changes, but were not rewarded for these responses. During blocks of
trials when the animals were instructed to direct attention to the hemi-
field opposite the joint receptive fields of the V1 and MT units (“attend
away” conditions, which were much easier for the animals since the
distractors were far away from the attended stimuli), they detected direc-
tion changes at full contrast 99% of the time and responded to direction
changes at the unattended location 5% of the time.

We fit our model to each MT unit’s responses to preferred and null
stimuli separately (see Normalization model of MT responses). We
therefore treated each stimulus configuration (e.g., preferred stimulus at
Location 1 and null at Location 2, or the opposite) separately. Our data
set therefore consisted of 64 MT units/conditions (32 units recorded in
separate sessions, each with two different stimulus configurations). None
of our results failed to reach significance, and none of our conclusions
differed if we restricted analysis to one stimulus configuration per unit.
We felt it was most conservative to consider both stimulus configurations
to account for differences in the location of each stimulus within the MT
unit’s receptive field or the number of V1 units whose receptive field
overlapped each stimulus.

We included a V1 unit for analysis and assigned it to a “pool” if it
responded significantly more to a full-contrast stimulus at one location
than the other, collapsed across the two directions of motion (t test, p �
0.01). Across the 64 recording sessions/stimulus configurations, 3262 V1
units satisfied this criterion (1631 unique units). The mean number of V1
units per pool from each recording session was 25.

Data analysis. All spike sorting was done off-line manually using Of-
fline Sorter (version 3.3.2, Plexon). We based our analyses on both single
units and multiunit clusters and use the term unit to refer to either.
Using chronically implanted microarrays (as we used for our V1 re-
cordings), it is nearly impossible to tell whether we recorded from the
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Figure 2. Spike count correlations between pairs of units in different, but not the same,
cortical areas depend on the visual stimulus. We compared rSC between units with similar
direction tuning in four stimulus conditions: a single stimulus moving in the preferred direction
(dark blue bars), a single stimulus moving in the null or antipreferred direction (light blue bars),
a preferred stimulus in the V1 unit’s receptive field combined with a null stimulus outside the V1
unit’s receptive field (but still inside the MT neuron’s receptive field; yellow bars), and a null
stimulus in the V1 unit’s receptive field combined with a preferred stimulus outside the V1 unit’s
receptive field (red bars). Spike count correlations did not substantially depend on the visual
stimulus for pairs of V1 units (left bars) or pairs of MT units (middle bars), but they did depend on
the stimulus for pairs of V1 and MT units (right bars; t tests on rate-matched distributions, p �
0.05; for detailed statistics, see Data analysis). Error bars represent SEM.
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same single or multiunit clusters on subse-
quent days. However, the MT units were re-
corded on different electrodes each day, so
each MT unit or V1–MT pair was unique.

Our analyses of neuronal data are based on
spike counts from 30 to 230 ms after stimulus
onset for V1 and 50 to 250 ms after stimulus
onset for MT to account for the visual latencies
of neurons in both areas. Using identical win-
dows for both areas led to qualitatively similar
results to those presented here.

We computed spike count correlations (rSC)
between pairs of units (Fig. 2) or between the
averaged activity of pools of V1 units and the
MT unit (see Fig. 4) using a standard Pearson’s
correlation coefficient. Because this measure is
sensitive to outliers, we excluded stimulus pre-
sentations on which either unit (or group of
units) in the pair responded more than three
SDs differently than its mean (according to the
convention in the study by Kohn and Smith,
2005). Stimulus presentations where a micro-
saccade was detected anywhere between 10 ms
before until 10 ms after the stimulus was shown
were excluded from analysis. We identified mi-
crosaccades using a velocity detection algo-
rithm (Engbert and Kliegl, 2003). The activity
of pools of V1 units (used to calculate correla-
tions in Fig. 4 and as inputs to the model in
Figs. 3–5) was defined as the average response
of all V1 units that responded significantly
more to a full-contrast stimulus presented
alone at one of the two locations inside the re-
ceptive field of the MT unit than the other (t
test, p � 0.01).

The distribution matching procedure to con-
trol for mean firing rate in our analysis of spike
count correlations was described in detail previ-
ously (Churchland et al., 2010; Ruff and Cohen,
2014b). Briefly, the goal of this analysis was to
have the same distribution of geometric mean fir-
ing rates (but not covariances) in each of the
stimulus or task conditions being compared, so
we used a different subdistribution of unit pairs
in each stimulus and attention condition. We
compare distributions of geometric mean firing
rates in each stimulus or task condition and select
the greatest common distribution. We then sub-
sample our pairs of units in each condition to
match that distribution and analyze spike count
correlations for those subdistributions. We re-
peat the resampling process 1000 times and re-
port average rSC values from these resampled
distributions and do statistics on the median re-
sampled distribution.

Normalization model of MT responses. To de-
termine whether a simple neural computation
could account for the stimulus and task depen-
dence that we observed in V1–MT rSC, we
adapted a normalization model of attention
that was used previously to describe the aver-
age responses of MT neurons in a variety of
stimulus and attention conditions (Ni et al.,
2012). This class of models provides the best
known description of the trial-averaged re-
sponses of sensory neurons in different stimu-
lus and task conditions (Boynton, 2009; Lee
and Maunsell, 2009; Reynolds and Heeger,
2009; Carandini and Heeger, 2012; Sanayei et
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Figure3. Actualandmodeledtrial-averagedresponsestodifferentstimulusandattentionconditions. A,AveragefiringratesofV1units
whosereceptivefieldsoverlapthestimulusmovingintheMTunit’spreferreddirection.Theiconsonthex-axisrepresentthecontrastsofthe
stimulus moving in the MT unit’s preferred direction (top row) and null direction (bottom row). The dashed red circle represents the cued
attention location. For the conditions where no dashed red circle is present, the monkey was cued to attend to the third stimulus in the
hemifield opposite the MT unit’s receptive field. The shorthand below the icons states the exact contrast and attention conditions (e.g.,
P100AN100 means 100% contrast stimuli in both the preferred and null directions with attention directed toward the stimulus moving in
the MT unit’s preferred direction). Error bars represent SEM. B, The same model for V1 units whose receptive fields overlap the stimulus
moving in the MT unit’s null direction. C, Both normalization models account well for the trial-averaged responses of MT units in different
stimulus and attention conditions. The different colored bars depict the actual responses of the MT units (purple) and the predicted
responses of the normalization model by Ni et al. (2012) (red) and of our modified normalization model (green) in a variety of stimulus and
attention conditions. None of the model fits were significantly different from the actual responses or from each other (t tests, p � 0.05).
Other conventions are as in A and B.
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al., 2015), so we reasoned that it would be a good place to start looking for
a description of the computations underlying the stimulus and task de-
pendence of cross-area rSC. We picked the Ni et al. (2012) model as a
starting point for our efforts because it was designed for a similar exper-
iment as ours and because it includes only five free parameters.

In the instantiation of the model in the Ni et al. (2012) paper (which is
very similar to other normalization models; Boynton, 2009; Lee and
Maunsell, 2009; Reynolds and Heeger, 2009; Carandini and Heeger,
2012; Ni et al., 2012; Sanayei et al., 2015), the mean response of an MT cell
to a combination of stimuli moving in the MT neuron’s preferred (P) and
null (N) directions is given by the following:

RP,N �
cPLP � cNLN

cP � �cN � �
, (1)

where RP,N is the mean response of the MT neuron; cP and cN are the
contrasts of the preferred and null stimuli, respectively; LP and LN rep-

resent the responses of the neuron’s linear receptive field to a full-
contrast stimulus moving in the preferred and null directions,
respectively; and � is a semisaturation constant. The numerator of Equa-
tion 1 therefore represents the linear response of the neuron, and the
neuron’s preference for the preferred direction of motion over the null
direction is determined by LP and LN. The denominator, which repre-
sents divisive normalization, depends only on the contrasts of the stimuli
and on the tuned normalization parameter �. The parameter � captures
the observation that MT neurons vary in the extent to which they exhi-
bition normalization.

Attention is instantiated in the model using the scaling parameter �,
such that the response of the MT neuron is given by

RPA,N �
�cPLP � cNLN

�cP � �cN � �
(2)
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but with independent noise added to match the average correlation across all conditions.
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when attention is directed to the stimulus moving in the MT neuron’s
preferred direction, and by

RP,NA �
cPLP � �cNLN

cP � ��cN � �
(3)

when attention is directed to the stimulus moving in the null direction. In
this model, attention acts to scale both the sensory evidence (numerators
in Eqs. 2 and 3) and the relevant normalization terms (denominators in
Eqs. 2 and 3). Together, Equations 1–3 have five free parameters (LP, LN,
�, �, and �), which are fit to the average responses of the MT neuron in
different stimulus and attention conditions.

We hypothesized that the tuned component of the MT neuron’s re-
sponse might come from its V1 inputs. We therefore replaced the terms
related to the MT neuron’s tuning in Equations 1–3 (cPLP and cNLN) with
the average firing rates of the V1 neurons whose receptive fields overlap
the preferred and null stimuli. In our model, Equations 1–3 are replaced
by the following:

RP,N �
sPV1P�cP� � sNV1N�cN�

cP � �cN � �
, (4)

RPA,N �
�sPV1P�cP� � sNV1N�cN�

�cP � �cN � �
, (5)

RP,NA �
sPV1P�cP� � �sNV1N�cN�

cP � ��cN � �
. (6)

In this model, V1P�cP� and V1N�cN� represent the trial-averaged (mea-
sured) responses of the pools of V1 neurons whose receptive fields over-
lap the preferred or null stimuli, respectively, whose contrast is given by
cP or cN. The parameters sP and sN are scaling parameters that reflect the
direction tuning of the MT neuron. Like the original model, this modi-
fied model has five free parameters (sP, sN, �, �, and �).

In this model, the mean V1 responses we recorded replace the
contrast-dependent terms in the numerator of Equations 1–3, and the
scaling parameters sP and sN account for the MT neuron’s direction
selectivity. This model is not a mechanistic description of how direction
tuning arises in MT (in which feedforward inputs from V1 might be
themselves direction selective; Movshon and Newsome, 1996). Instead,
our logic relies on the observation that the responses of V1 neurons are,
on average, correlated with a wide range of other V1 neurons (Smith and
Kohn, 2008). Therefore, the responses of the V1 units we recorded are
likely correlated with the responses of the V1 neurons that provide direct
inputs to MT.

We fit our modified model to the trial-averaged responses of the MT
unit in the 10 stimulus and attention conditions using the measured
trial-averaged responses of the V1 units whose receptive fields over-
lapped each stimulus (Fig. 3). We then predicted the response of the MT
unit on each trial using the fitted model parameters and the actual re-
sponses of the V1 units recorded on that trial. We used the predicted MT
responses to calculate predicted spike count correlations between the
modeled MT unit and the recorded V1 units (Fig. 4).

Results
Spike count correlations between, but not within, cortical
areas depend on visual stimuli
One of our primary goals was to compare the dependence of rSC

between pairs of neurons in the same or different cortical areas on
the visual stimulus. Consistent with previous results (Kohn and
Smith, 2005; Huang and Lisberger, 2009), we found that correla-
tions between pairs of units in the same area did not depend
strongly on the direction the stimulus was moving. Figure 2
shows correlations between pairs of V1 units (left) and pairs of
MT units (middle) that responded more strongly to the same one
of the two motion directions presented (t test, p � 0.05) and, in
the case of V1, were in the same spatial pool (see Materials and

Methods). These correlations are based on stimulus presenta-
tions when the animal’s attention was directed to a stimulus in
the opposite hemifield as the receptive fields of the recorded units
(the “attend opposite” condition; see Materials and Methods).
Overall, correlations were very slightly higher when the single
stimulus in the joint receptive field moved in the units’ preferred
direction than when it moved in the null direction (t test, p �
10�4 for V1 and p � 10�3 for MT). However, correlations are
known to covary with firing rate (Cohen and Kohn, 2011), and
the difference in rSC between preferred and null stimuli was not
significant for MT (t test, p 	 0.12) and only barely significant for
V1 (t test, p 	 0.04) when we considered distributions of pairs for
which the distributions of firing rates was matched for preferred
and null stimuli (see Materials and Methods). Similarly, adding a
second stimulus outside the receptive fields of the V1 units and
within the receptive fields of the MT units had little effect on rSC

between pairs of units in the same area (t tests, p values for rate
matched pairs were �0.05 for all comparisons).

However, correlations between pairs of units in different areas
depended strongly on the direction of the stimulus and on the
presence of a second stimulus (Fig. 2, right). Correlations be-
tween V1 and MT were greater when a stimulus moved in the MT
neuron’s preferred direction compared to its null direction (t test,
p � 10�3 for rate-matched pairs) and were lower for pairs of
stimuli than for either stimulus alone (t tests, p � 10�3 for rate
matched pairs). The reduction in cross-area correlation for pairs
of stimuli was not simply because the second stimulus was non-
preferred; V1–MT rSC was lower when a preferred stimulus was
added to a null stimulus than for the null stimulus alone (t test,
p � 10�3 for rate matched pairs; compare the turquoise and red
bars on the right side of Fig. 2). Therefore, two different stimulus
manipulations (changing the motion direction and adding a sec-
ond stimulus), which both have substantial effects on the mean
firing rates of V1 and MT units, have substantial effects on cross-
area, but not within-area, spike count correlations.

Attention has opposite effects on spike count correlations
between pairs of neurons in the same or in different cortical
areas
We also compared the dependence of within- versus cross-area
correlations on a factor that is associated with changes in rSC

within a cortical area: visual attention. In the same animals and in
the same recording sessions as in Figure 2, we measured the ef-
fects of switching attention between two stimuli within the MT
unit’s receptive field (Fig. 1; Materials and Methods) on V1–V1
and V1–MT correlations. These two stimuli always moved in
opposite directions (the preferred and null directions of the MT
cell under study) and were either both 8% contrast or both 100%
contrast, and contrast was randomly interleaved on each stimu-
lus presentation. On these trials, there was no third stimulus in
the opposite hemifield.

Consistent with previous results, we found that attention af-
fected the responses of V1 and MT units in several ways. Atten-
tion was associated with increases in the rates (Maunsell and
Cook, 2002; Yantis and Serences, 2003; Reynolds and Chelazzi,
2004) of units in both areas (Fig. 3) and with decreases in spike
count correlations (Cohen and Maunsell, 2009, 2011; Mitchell et
al., 2009; Zénon and Krauzlis, 2012; Herrero et al., 2013; Grego-
riou et al., 2014; Ruff and Cohen, 2014a; Luo and Maunsell, 2015)
between pairs of V1 units (pairwise attention-related V1 correla-
tion decrease, 0.008; Wilcoxon rank sum test, p 	 4.9 � 10�6;
Ruff and Cohen, 2016) as well as between pairs of MT units
(pairwise attention-related MT correlation decrease, 0.019; Wil-
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coxon rank sum test, p 	 0.017; Ruff and Cohen, 2016). Impor-
tantly, attention was also associated with the opposite pattern of
changes in cross-area correlations: shifting attention toward the
joint receptive fields of a pair of V1 and MT neurons increased,
rather than decreased, their spike count correlation (pairwise
attention-related V1–MT correlation increase, 0.018; Wilcoxon
rank sum test, p 	 1.4 � 10�4; Ruff and Cohen, 2016; these data
are shown in Fig. 5C averaged within simultaneously recorded
groups, see Normalization accounts for the stimulus and atten-
tion dependence of V1–MT correlations).

Together, our results show that spike count correlations be-
tween pairs of units in different cortical areas depend very differ-
ently on stimulus and task conditions. The two stimulus
manipulations we tried (changing the direction of the stimulus,
which is thought to affect feedforward inputs to neurons in visual
cortex, or adding a second stimulus, which is thought to invoke
divisive normalization; Carandini and Heeger, 2012) had no ef-
fect on correlations between pairs of units in the same areas, but
were associated with changes in V1–MT correlations. In contrast,
attention affected both within- and cross-area correlations, but in
opposite ways.

A modified normalization model explains the average
responses of MT neurons in different stimulus and attention
conditions
We wondered whether the stimulus and task dependence of
cross-area correlations could provide insight into the neuronal
computations that occur between different levels of processing.
The simplest prevailing hypothesis concerning the relationship
between V1 and MT responses is that the activity of MT neurons
reflect summed inputs from V1 that have been passed through a
divisive nonlinearity (Carandini and Heeger, 1994; Rust et al.,
2006). A simple model of divisive normalization has become
the premiere framework for understanding the trial-averaged
responses of neurons in many sensory, cognitive, and motor
systems (Carandini and Heeger, 2012) and for relating MT
responses to stimulus and attention properties in particular
(Lee and Maunsell, 2009; Reynolds and Heeger, 2009; Ni et al.,
2012).

To determine whether the same simple computation could
account for the stimulus and attention dependence of cross-area
correlations, we adapted a standard normalization model of at-
tention (Ni et al., 2012) to include trial-to-trial variability (for
details of how our model relates to the previously published
model, see Materials and Methods). Our logic was to substitute
the trial-averaged responses of V1 units for the stimulus param-
eters in the published model, fit the free parameters in the model
to the trial-averaged responses of V1 and MT units, and deter-
mine whether the resulting function captured the stimulus and
attention dependence of V1–MT rSC that we observed (Fig. 2).

Because our normalization model predicts MT responses as a
function of the average rate of a pool of V1 units, we first calcu-
lated the average activity of an MT unit and the pools of V1 units
we recorded (for details of pool assignment, see Materials and
Methods) in each of the 10 stimulus and attention conditions in
our task (Fig. 3). As expected, firing rates were affected by atten-
tion, the presence of a second stimulus, and the contrasts and
motion directions of the stimuli.

Standard normalization models explain the trial-averaged re-
sponses of MT responses as a function of the response of the linear
receptive field to preferred and null stimuli (which accounts for di-
rection tuning; the numerators in Eqs. 1–3), tuned normalization
(which accounts for nonlinearities in the responses to combinations

of stimuli, which differ from neuron to neuron; the denominators in
Eqs. 1–3), and weighting by attention (the parameter � in Eqs. 1–3).
To determine whether the normalization model could account for
shared trial-to-trial variability between V1 and MT, we substituted
the responses of the pools of V1 units whose receptive fields over-
lapped the stimulus moving in the MT unit’s preferred or null direc-
tion for the responses of the linear receptive field (Eqs. 4–6).

Like the original normalization model, our modified normal-
ization model did a good job capturing the trial-averaged re-
sponses of MT units across the 10 stimulus and attention
conditions in our study (Fig. 3C; note that both models have five
free parameters). Across the 64 MT units/stimulus configura-
tions in our study, the original model (Eqs. 1–3) captured, on
average, 95% of the variance in the trial-averaged responses of the
MT units, and our modified model captured 92% of the variance.
The difference between the variance accounted for by the two
models was small but significant (mean difference, 3%; paired t
test, p 	 0.015). The saturating nonlinearity in the contrast re-
sponse functions of the V1 units likely accounts for most of the
difference between the two models. Even so, the modified model
accounts for a large proportion of the variance, and basing its
predictions on the responses of V1 units allows us to test whether
it can also account for shared trial-to-trial variability.

The modified normalization model explains shared
variability between V1 and MT
After we fitted the model using the trial-averaged responses of the
V1 and MT units we recorded, we predicted the response of the
MT unit on each trial using the fitted model parameters and
the actual responses of the V1 units recorded on that trial. On
each trial, we therefore recorded three responses (the response of
the MT unit and the average responses of both of the pools of V1
units whose receptive fields respectively overlapped the stimuli
moving in the MT unit’s preferred and null directions), and we
used the model to predict the MT unit’s response. We used these
data and predictions to calculate four correlation coefficients
for each stimulus and attention condition: between the actual and
modeled MT units and the pools of V1 units whose receptive
fields overlapped the preferred and null stimuli, respectively.

Our modified normalization model accounts well for many
aspects of the V1–MT correlations we measured. The green and
blue points in Figure 4A depict the predicted and measured cor-
relations between MT and the pool of V1 units whose receptive
fields overlapped the stimulus moving in the MT unit’s preferred
or null direction, respectively. Each point represents the average
predicted and the average measured correlation for one of the 10
stimulus/attention conditions in our task (Fig. 3). The model
accounts for 49% of the variance in the mean correlations be-
tween the MT cell and the V1 pool whose receptive fields overlap
the stimulus moving in the MT unit’s preferred direction across
different stimulus and attention conditions and 81% of the vari-
ance in the mean correlations between the MT cell and the V1
pool whose receptive fields overlap the stimulus moving in the
MT unit’s null direction. Another strategy would have been to use
the fitted parameters from the model by Ni et al. (2012) and
substitute, after fitting, scaled versions of the contrast responses
curves of the V1 pools for the linear functions of contrast in the
numerators of Equations 1–3. This version of the model accounts
for 44% of the variance in the mean correlations between the MT
cell and the V1 pool whose receptive fields overlap the stimulus
moving in the MT unit’s preferred direction across different
stimulus and attention conditions and 78% of the variance in the
mean correlations between the MT cell and the V1 pool whose
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receptive fields overlap the stimulus moving in the MT unit’s
preferred direction. This performance is similar but slightly
worse than the model we used (t tests, p � 0.05 for both the
preferred and null pools), perhaps because fitting the parameters
to the V1 responses allows the fits to partially compensate for
nonlinearities in the V1 contrast response functions.

The models’ poorer performance predicting correlations
between MT and the pool of V1 units whose receptive fields
overlap the preferred stimulus is likely caused by a saturation
in the predicted correlations (many of the predicted correla-
tions in Fig. 4A were near 1). Considering that the model was
fit only to average firing rates (and therefore did not take any
aspect of trial-to-trial variability into account), the model cap-
tures an impressive amount of the available stimulus and at-
tention dependence of V1–MT correlations.

Although the normalization model captures much of the way
that V1–MT correlations vary depending on the visual stimuli or
the attention condition, the absolute magnitude of the model’s
predicted and actual correlations is notably different. In our
model, the only source of trial-to-trial variability in MT re-
sponses comes from V1. Because the V1 inputs to the model
represent averages of dozens of units, the predicted variability is
low. The total amount of predicted trial-to-trial variability in our
modeled neurons is much less than in the MT units we recorded
(quantified using the Fano factor, which is the ratio of variance to
mean responses, 0.59 for modeled units and 1.41 for recorded
MT units, which are significantly different, paired t tests, p �
10�10), and all of that variability comes from V1. If (as is almost
certainly the case) the MT units have trial-to-trial response vari-
ability from any source besides the V1 units we happened to
record, the predicted correlations will always be higher than the
actual ones.

Consistent with this idea, we found that adding independent,
zero-mean Gaussian noise to the responses of the MT unit made
it possible for the model to quantitatively match V1–MT corre-
lations. For each recording session, we added enough indepen-
dent noise to match the average V1–MT correlation across all
stimulus and task conditions. Figure 4B depicts the results of this
exercise. The average magnitude of the predicted and actual
correlations (across all of the points along x- and y-axes in Fig.
4B) was therefore by definition equal, but the condition-by-
condition correlation between the predicted and actual correla-
tions was not trivial. Similar to the noise-free version of the
model, this version of the model accounts for 51% of the variance
in the mean correlations between the MT cell and the V1 pool
whose receptive fields overlap the stimulus moving in the MT
unit’s preferred direction across different stimulus and attention
conditions and 82% of the variance in the mean correlations
between the MT cell and the V1 pool whose receptive fields over-
lap the stimulus moving in the MT unit’s null direction.

Although the modified model in Figure 4B accounts well for
the stimulus and attention dependence of V1–MT correlations,
we had to add too much noise to quantitatively match the ob-
served correlations. The average Fano factor of the modeled MT
units was 106, which is much larger than for the recorded MT
units (which was 1.41). Therefore, the existence of independent
noise is not a satisfactory explanation for why our normalization
model predicted much higher than observed V1–MT correla-
tions. Adding independent noise did not affect the extent to
which the model captured stimulus and attention dependence of
V1–MT correlations, so this dependence must arise from the
covariance, rather than from the variance of the responses of the
units we recorded. Consistent with this idea, we found that in

the empirical data, the mean V1–MT covariance and rSC in each
condition were highly correlated (r 	 0.95 for interactions be-
tween the MT unit and the V1 and the V1 pool whose receptive
fields overlap the stimulus moving in the MT unit’s preferred
direction, r 	 0.96 for interactions between the MT cell and the
V1 pool whose receptive fields overlap the stimulus moving in the
MT unit’s null direction).

Together, these results suggest that normalization provides a
good account of the stimulus and attention dependence of rSC by
affecting the covariance of V1 and MT units, but that the variance
of cortical neurons is affected by some mechanism other than
simple summation of feedforward inputs that go through a
divisive nonlinearity combined with independent noise. An
attractive possibility is the cancellation of correlated inputs in a
balanced inhibitory– excitatory network (van Vreeswijk and
Sompolinsky, 1996; Amit and Brunel, 1997; Renart et al., 2010).
Because our model is descriptive rather than mechanistic, we are
unable to test this idea in the current framework.

Normalization accounts for the stimulus and attention
dependence of V1–MT correlations
Even when overestimating the magnitude of V1–MT correla-
tions, our normalization model (Fig. 4A) accounts for many of
the ways that sensory and cognitive factors influenced our mea-
sured V1–MT correlations. For example, it correctly predicts that
correlations would be higher between the MT unit and the V1
units whose receptive fields overlap the stimulus moving in the
MT unit’s preferred direction than with V1 units whose receptive
fields overlap the null stimulus (Fig. 5A, compare green, purple
bars). This observation is contrary to observed correlations be-
tween pairs of units in the same cortical area, which were indis-
tinguishable for preferred and null stimuli (Fig. 2). In the model,
this stimulus dependence comes about because of the parameter
sP � sN in Eqs. 4 – 6. This relationship leads to the direction tun-
ing of the MT unit (greater responses to preferred than null stim-
uli) and also means that the responses of V1 units whose receptive
fields overlap the preferred stimulus have a greater effect on the
predicted MT responses than the responses of the V1 units whose
receptive fields overlap the null stimulus.

The model also correctly predicts that correlations between
V1 and MT will be lower when there are two stimuli within the
MT unit’s receptive field than when there is only one (Fig. 5B,
compare green, purple bars). The model also predicts that this
effect will be smaller for V1 units whose receptive fields overlap
the preferred stimulus than those whose receptive fields overlap
the null stimulus. When there is only one stimulus, the units
whose receptive fields overlap the location where there is no stim-
ulus fire at a very low rate, so the MT units’ variability is almost
entirely inherited from the V1 units whose receptive fields over-
lap the stimulus that is present. The asymmetry in this effect on
V1 units whose receptive fields overlap the preferred and null
stimuli comes again from the asymmetry in the parameters sP and
sN in Eqs. 4 – 6. Adding a more highly weighted preferred stimulus
has a greater effect on the predicted MT response than adding a
null stimulus.

Although there is a hint of asymmetry in the effects of adding
a preferred or null stimulus in our data, the model predicts a
greater asymmetry than we observed. One possibility is that
tuned normalization (which does not affect the predicted
V1–MT correlations in our model because it occurs in the de-
nominator of Eqs. 4 – 6, which does not have trial-to-trial vari-
ability) corrects for the preferred-null asymmetry to a certain
extent. Consistent with this idea, the units that exhibit a greater
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degree of tuned normalization (higher � in Eqs. 4 – 6) tended to
have a greater difference between the predicted and observed
asymmetry (correlation between � and the difference between
the two purple bars and the two green bars in Fig. 5B of 0.20,
which is significantly greater than 0, p � 0.05).

Finally, the model correctly predicts that attention should in-
crease V1–MT correlations (Fig. 5C, compare green, purple
bars). The predicted and actual attention-related increases in
V1–MT correlations were statistically indistinguishable (t tests,
p 	 0.80 for V1P–MT correlations, p 	 0.84 for V1N–MT corre-
lations). In the model, attention-related changes in V1–MT cor-
relations can be accounted for either by changes to the activity of
V1 inputs or by changes in the effective weighting of V1 inputs
(the parameter � in Eqs. 4 – 6).

A linear model fails to account for the effects of stimulus
direction, adding a second stimulus, or attention on V1–MT
correlations
We focused on a normalization model because normalization has
become an accepted framework for explaining the trial-averaged
responses of neurons in a wide range of systems and conditions
(Carandini and Heeger, 2012). However, it remains possible that
a simpler model would also account for the stimulus and atten-
tion dependence of V1–MT correlations.

To investigate this possibility, we constructed a linear model
of MT responses. This model is identical to our normalization
model without the normalization step. Therefore, the mean re-
sponse of an MT cell to a combination of stimuli moving in the
MT neuron’s preferred or null direction is given by the following:

RP,N � sPV1P�cP� � sNV1N�cN� , (7)

RPA,N � �sPV1P�cP� � sNV1N�cN� , (8)

RP,NA � sPV1P�cP� � �sNV1N�cN� , (9)

where the conventions in Equations 7–9 are identical to those in
Equations 4 – 6.

Overall, this model captures the majority of the variance in
mean MT responses (85% of the variance compared with 92% in
the normalization model). It did substantially worse, however, at
capturing the stimulus and attention dependence of V1–MT cor-
relations (Fig. 5, blue bars). The linear model substantially over-
predicts the difference in correlation in response to stimuli in the
MT neuron’s preferred versus null directions (which is larger
than the actual difference in the data and the difference predicted
by the normalization model; t tests, p � 0.05; Fig. 5A, blue bar).
This difference causes the linear model to predict an even larger
asymmetry in the effect of adding a second stimulus in the pre-
ferred versus null direction than the normalization model, which
already overestimates this asymmetry (predicted difference be-
tween the linear and normalization models is �0, t test, p � 0.05;
Fig. 5B). Furthermore, the linear model predicts that the sign of
the attention-related change in correlation depends on the direc-
tion of the stimulus (Fig. 5C, compare blue bars, left, right),
whereas the observed attention-related correlation change did
not depend on the direction of the stimulus (t test, p � 0.05).

These failures can be explained by differences in the fitted
parameters in the linear and normalization models. The normal-
ization model has three tuned parameters (sP, sN, and �), whereas
the linear model has only two (sP and sN). Therefore, the ratio of
sP to sN is the only source of tuning in the linear model. Unsur-
prisingly, the ratio of the fitted values of sP and sN are larger in the

linear model than in the normalization model (mean ratio of sP to
sN is 7.56 in the linear model and 2.97 in the normalization
model). This large ratio accounts for the larger than observed
stimulus dependence in the linear model. Because attention is
instantiated in the linear model only by weighting the tuned
terms, the large ratio also accounts for the incorrect prediction of
the linear model that the sign of the attention-related change in
correlation depends on the direction of the stimulus.

Overall, the failure of the linear model to account for the
stimulus and attention dependence of V1–MT correlations sug-
gests that a nonlinearity such as divisive normalization is neces-
sary to describe the pattern of correlation changes we observed.

Discussion
Using shared variability to understand
neuronal computations
We show here that correlations between pairs of units within the
same and different cortical areas depend on visual stimuli and
task conditions in qualitatively different ways. We used a modi-
fied normalization model to show that the stimulus and attention
dependence of cross-area correlations could be accounted for by
a scenario in which MT responses are described as a weighted
sum of V1 responses that have been passed through a divisive
nonlinearity. Critically, we fit the model only to the trial-averaged
responses of the V1 and MT units, and these fits could be used to
explain the patterns of correlations we observed.

Our results suggest that understanding the way that the shared
trial-to-trial variability of neuronal responses depends on differ-
ent sensory, motor, and cognitive factors can help identify the
computations performed by networks of neurons within and
across brain areas. In particular, our results support the hypoth-
esis that normalization is a good description of the relationship
between the responses of neurons in visual cortex in different
stimulus and task conditions, and the responses of neurons in
other areas. Although many models include multiple layers (an
analogy to multiple brain areas), our results suggest that viable
models will have to account for shared variability in a way that
follows the predictions of a normalization model.

Differences between sensory normalization and attention
Two of our manipulations, adding a second stimulus and attend-
ing to one of multiple stimuli, are part of a long list of processes in
a variety of species, brain areas, and experimental conditions that
affect the trial-averaged responses of individual neurons in ways
that are well described by normalization, which has been pro-
posed to be a canonical neural computation (for review, see
Carandini and Heeger, 2012). In particular, normalization accu-
rately describes the divisive (or multiplicative) scaling of neuro-
nal responses associated with a wide variety of modulatory
processes such as the contrast of visual stimuli (Rust et al., 2006;
Carandini and Heeger, 2012), multisensory integration (Ohshiro
et al., 2011), reward (Louie et al., 2013), and attention (Boynton,
2009; Lee and Maunsell, 2009; Reynolds and Heeger, 2009; Ni et
al., 2012). Many of the same modulatory processes that scale
neuronal responses are also associated with changes in response
covariability (for review, see Cohen and Kohn, 2011), and the
extent to which a given neuron’s average response is modulated
by adding a second stimulus is highly correlated with the extent
to which its response is affected by shifting attention (Lee and
Maunsell, 2009; Ni et al., 2012; replicated in our data set, data
not shown). These observations are consistent with the hy-
pothesis that this whole class of modulatory processes, includ-
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ing adding a second stimulus and attention, share underlying
neuronal mechanisms.

However, one aspect of our results is inconsistent with this
idea. We observed that adding a second stimulus affects spike
count correlations between pairs of units in different, but not the
same, cortical area. In contrast, attention affects both within- and
cross-area correlations, but in different directions. The normal-
ization model may help explain this difference. In the model,
adding a second stimulus affects both the numerator and denom-
inator of Equations 4 – 6 in an additive way, while attention is
instantiated by the scaling parameter �. A literal interpretation of
this model is that attention acts on inputs that have already
passed through the divisive nonlinearity. This possibility is con-
sistent with the neuron-by-neuron correlation between modula-
tion by attention and adding a second stimulus because neurons
whose inputs are not passed through the nonlinearity would not
show attention effects (Ni et al., 2012). Our results support this
idea by showing that the effects of both adding a second stimulus
and attention on V1–MT correlations are consistent with the
normalization model (Fig. 5).

Implications for the mechanisms underlying sensory and
cognitive processes
Because normalization is so ubiquitous, any constraints on its
underlying neuronal mechanism are very valuable. It is impor-
tant to note that the normalization model (both the original
model and our modified version) describes a computation, not a
neuronal mechanism. However, our observations concerning the
stimulus and cognitive dependence of cross-area spike count cor-
relations, and the fact that they are largely predicted by the nor-
malization model, place constraints on possible mechanisms.

Theoretical models of how information is communicated
from one area to another make very different predictions about
shared variability. For example, strictly feedforward models in
which excitation and inhibition are not differentiated predict un-
physiologically high spike count correlations (Kriener et al.,
2008). Incorporating a nonlinearity such as divisive normaliza-
tion into a feedforward model decreases correlated variability
and improves estimates of the stimulus dependence of correla-
tions (Tripp, 2012). Models in which excitation and inhibition
are balanced and independent have near-zero correlations (van
Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997), and
recurrent networks with excitatory–inhibitory balance exhibit
correlation cancellation that leads to a high variance in correla-
tion coefficients but near-zero mean correlations (Renart et al.,
2010). Furthermore, the spiking nonlinearity can make correla-
tions scale with firing rates (de la Rocha et al., 2007), which our
mean matching controls show is not sufficient to account for our
results.

Our correlation results therefore place constraints on poten-
tial models about interarea communication. Our results are
broadly consistent with a feedforward network in which the in-
puts go through a divisive nonlinearity (Tripp, 2012), combined
with some mechanism that reduces correlations overall (such as
excitatory–inhibitory correlation canceling; or see Tripp, 2012).
Any viable model will need to simultaneously account for the
stimulus and task dependence of correlations within the same
area as well as between areas.

Thousands of neurons in many brain areas respond to any
sensory stimulus or contribute to any cognitive or motor pro-
cesses. In the last two decades, improvements in multineuron
recording techniques have led to a dramatic increase in the num-
ber of studies that measure shared variability as a way to gain

insight into the computations and mechanisms underlying such
sensory, cognitive, and motor processes. Because we found such
different dependence of correlated variability within and across
areas on sensory and cognitive processes, our results suggest that
a full understanding will require simultaneous recordings in mul-
tiple areas.
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