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A pervasive yet puzzling feature of cortical circuits is that despite their com-

plex wiring, population-wide shared spiking variability is low dimensional.

Neuronal variability is often used as a probe to understand how recurrent cir-

cuitry supports network dynamics. However, current models cannot internally

produce low dimensional shared variability, and rather assume that it is inher-

ited from outside the circuit. We analyze population recordings from the visual

pathway where directed attention differentially modulates shared variability

within and between areas, which is difficult to explain with externally imposed

variability. We show that if the spatial and temporal scales of inhibitory cou-

pling match physiology, network models capture the low dimensional shared
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variability of our population data. Our theory provides a critical link between

measured cortical circuit structure and recorded population activity.

One Sentence Summary: Circuit models with spatio-temporal excitatory and inhibitory in-

teractions generate population variability that captures recorded neuronal activity across cogni-

tive states.

Introduction

The trial-to-trial variability of neuronal responses gives a critical window into how the cir-

cuit structure connecting neurons drives brain activity. This idea combined with the widespread

use of population recordings has prompted a deep interest in how variability is distributed over

a population (1, 2). There has been a proliferation of data sets where the shared variability

over a population is low dimensional (3–7), meaning that neuronal activity waxes and wanes

as a group. How cortical networks generate low dimensional shared variability is currently

unknown.

Theories of cortical variability can be broadly separated into two categories: ones where

variability is internally generated through recurrent network interactions (Fig. 1Ai) and ones

where variability originates external to the network (Fig. 1Aii). Networks of spiking neuron

models where strong excitation is balanced by opposing recurrent inhibition produce high single

neuron variability through internal mechanisms (8–10). However, these networks famously

enforce an asynchronous solution, and as such fail to explain population-wide shared variability

(11–13). This lack of success is contrasted with the ease of producing arbitrary correlation

structure from external sources. Indeed, many past cortical models assume a global fluctuation

from an external source (2, 7, 14–16), and accurately capture the structure of population data.

However, such phenomenological models are circular, with an assumption of variability from
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an unobserved source explaining the variability in a recorded population.

Determining whether output variability is internally generated through network interactions

or externally imposed upon a network is a difficult problem, where single area population

recordings may preclude any definitive solution (Fig. 1Ai vs Aii). In this study we consider

attention-mediated shifts in population variability obtained from simultaneous recordings of vi-

sual area V1 and the middle temporal area MT (17). These data provide novel constraints for

how shared variability is distributed within and across populations (Fig. 1Aiii), strongly sug-

gesting that a component is internally generated within an area. We show that networks with

spatially dependent coupling (12, 18) and synapses with temporal kinetics that match physiol-

ogy naturally produce low dimensional population-wide variability. Further, attention-mediated

top-down modulation of inhibitory neurons (7) in our model provides a parsimonious mecha-

nism that controls population-wide variability in agreement with experimental results.

There is a long standing research program aimed at providing a circuit-based understanding

for cortical variability (8–10,19). Our work is a critical advance through providing a mechanis-

tic theory for the genesis and propagation of realistic low dimensional population-wide shared

variability based on (from) established circuit structure.

Results

Externally imposed or internally generated shared variability?

Directed attention reduces the mean spike count correlation coefficient between neuron pairs

in visual area V4 during an orientation detection task (Fig. 1Bi; see (20)). Further, most of

the shared variability across the population is well described by a single latent variable (4, 7),

consistent with findings from other cortices (3,5,6). Thus motivated, we represent the aggregate

population response with a scalar random variable R = X + �H , where X is a stimulus input

and H is a hidden source of fluctuations (with strength �) (Fig. 1Bii). In this simple model
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the trial-to-trial fluctuations are inherited from both X and H , but we model attention as only

reducing the variance of H (Var(H)). There is a large range of parameter values that match the

⇠ 30% reduction in Var(R) reported in the V4 data (Fig. 1Biii, blue curve; see Supplemental

Text). Certain parameter choices are unreasonable (pink region in Fig. 1Biii), such as � being

overly large so that R is no longer driven by X , or Var(H) ! 0 in the attended state, requiring

the area that produces H to be silent. Fortunately, there are moderate � and Var(H) choices that

capture the data (section of the blue curve that is not in the pink region in Fig. 1Biii), meaning

that a one-dimensional external latent variable readily explains the data.

Multi-electrode recordings from visual area MT and V1 during an attention modulated task

(17) also show a reduction of shared variability for neuron pairs within an area (Fig. 1Ci,

Top), recapitulating the results observed in V4. However, when V1 and MT neurons are jointly

recorded, there is an attention-mediated increase of spike count correlations across areas (Fig.

1Ci, Bottom). Returning to the population model with R modeling MT, we augment the model

with V1 being the input X = X0 + H (Fig. 1Cii). Here  denotes how much the hidden

variable is directly shared between areas, and X0 is the variability in X that is independent

of H . For our linear model we calculate the constraint curves for Var(R) and Cov(R,X) that

match the MT-MT and V1-MT data sets (blue curves, Fig. 1Ciii; see Supplementary Text). The

constraints require our model to assume both a large influence of H on R and a large attentional

modulation of H (pink region in Fig. 1Ciii). This tightening of model assumptions reflects a

compromise between an attention-mediated increase in variability transfer from X ! R so that

Cov(R,X) increases and a decrease in Var(H) so that Var(R) decreases. This compromise can

be mitigated by setting  to be small, meaning that a large component of the fluctuations in R

is private from those in X (Fig. 1Ciii).

The source of private variability to an area may still be external to that area, and there

are several experimental (21) and theoretical (16) studies that identify sources of top-down
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Figure 1: Caption is on next page.
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Figure 1: Models of shared variability. (A) Variability may either be internally generated
within a population (Ai) or externally imposed upon a population (Aii). New model constraints
emerge by accounting how variability is distributed and modulated across several populations
(Aiii). (Bi) Attention decreases spike count correlation rSC obtained from multi-electrode array
recording from V4 (n=72765 pairs, Wilcoxon rank-sum test, p = 3.3 ⇥ 10�6). (Bii) Hidden
variable model where the response variability R (modeling V4) comes from a hidden vari-
able H with influence �. (Biii) The attention-mediated reduction in variability in V4 gives
a constraint that is a trade off between the reduction in Var(H) and � (blue curve). The
pink region denotes modulations of H and influence � that are excessive. (Ci) Top: Mean
rSC between simultaneously recorded MT units (n=270 pairs) and between simultaneously
recorded V1 units (n=34404 pairs) in both unattended and attended states (Wilcoxon signed-
rank test, MT: p = 0.017, V1: p = 4.9 ⇥ 10�6). Bottom: Average cross-area rSC between V1
units and MT units (n=1631 cross-area pairs) in both attentional states (Wilcoxon ranked-sum,
p = 1.4 ⇥ 10�4). (Cii) Hidden variable model for connected areas X (modeling V1) and R
(modeling MT); H projects to X with strength . (Ciii) The attention mediated changes in rSC
give further constraints on H with the increase in  indicated. Light blue curve is the same as
that in Biii for comparison. (D) Model of private variability that is externally applied (Di) or
internally generated (Dii) to each area in a feedforward hierarchy. The data in Bi is reproduced
from (20) and the data in Ci is reproduced from (17). Error bars represent the SEM.

variability in cortical circuits. However, if we extend our analysis to a cortical hierarchy then

each area requires an external variability ‘generator’ that is private to that area (Fig. 1Di). A

more parsimonious hypothesis is that variability is internally generated within each area (Fig.

1Dii). Below we investigate the circuit mechanics required for low dimensional population-

wide shared variability to be an emergent property within a cortical network.

Population-wide correlations with slow inhibition in spatially ordered net-
works

Most model cortical networks have disordered connectivity, namely where connection probabil-

ity is uniform between all neuron pairs (8,9,11,22). When such models have a balance between

excitation and inhibition they produce spike trains that are irregular in time (Fig. 2Ai), with a

broad distribution of firing rates (Fig. 2B, top purple curve), and uncorrelated between neurons

(Fig. 2Ai and C, top purple curve). However, there is abundant evidence that cortical connec-
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tivity is spatially ordered with a connection probability falling off with the distance between

neuron pairs (23, 24). Recently we have extended the theory of balanced networks to include

such spatially dependent connectivity (12, 18). Briefly, we model a two dimensional array of

integrate-and-fire style neurons that receive both feedforward projections from a layer of exter-

nal Poisson processes as well as recurrent projections within the network (see Methods for a

full model description); connection probability of all projections decays like a Gaussian with

distance (Fig. 2Aii, left). If the spatial scale of feedforward inputs is narrower than the scale

of recurrent projections the asynchronous state no longer exists (12), giving way to a solution

with weak but spatially structured correlations (Fig. 2Aii and supplemental movie S1). Never-

theless, the mean correlation across all neuron pairs vanishes for large network size (Fig. 2C,

bottom purple curve), in stark disagreement with a vast majority of experimental studies (1, 2),

including the data from V4 (Fig. 1Bi) and MT (Fig. 1Ci).

Many cortical network models assume that the kinetics of inhibitory conductances are faster

than those of excitatory conductances (8–11,25), including our past models of spatially ordered

networks (Fig. 2Aii and (12)). However, this assumption is at odds with physiology where ex-

citatory ↵-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA) have faster

kinetics (26, 27) than those of the inhibitory �-Aminobutyric acid receptors (GABAa) (28, 29).

In networks with disordered connectivity, when the timescales of excitation and inhibition

match experimental values then activity becomes pathologic, with homogeneous firing rates

(Fig. 2B, top green curve) and excessive synchrony (Fig. 2Aiii and C, top green curve). This

consequence is likely the justification for the faster inhibitory kinetics in model networks.

When a spatially ordered model has synaptic kinetics that respect physiology they produce

dynamics that are quite distinct from those of disordered networks. Firing rates are broad (Fig.

2B, bottom green curve) and pairwise correlations are reasonable in magnitude (Fig. 2C, bottom

green curve). Further, population-wide turbulent dynamics (Fig. 2Aiv and Supplemental movie
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Figure 2: The spatial and temporal scales of synaptic wiring determine internally gener-
ated variability. Networks of excitatory and inhibitory neuron models were simulated with
either disordered connectivity (Ai and Aiii)) or spatially ordered connectivity (Aii and Aiv).
Networks with fast inhibition (⌧i = 1 ms; Ai and Aii) were compared to networks with slow in-
hibition (⌧i = 8 ms; Aiii and Aiv); in all models the timescale of excitation was ⌧e = 5 ms. For
spatially disordered models spike train rasters are plotted where no particular neuron ordering
is used (Ai and Aiii). For spatially ordered networks three consecutive spike time raster snap-
shots are shown with a black dot indicating that the neuron at spatial position (x, y) fired within
one millisecond of the time stamp. (B) Distributions of firing rates of excitatory neurons in the
disordered (top) and spatially ordered (bottom) models, with faster inhibitory kinetics (purple)
compared to slower inhibitory kinetics (green). (C) Same as B for the distributions of pair-
wise correlations among the excitatory population. (D) Mean correlation among the excitatory
population as a function of the inhibitory decay time constant (⌧i).
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S2) accompany a small, but nonzero, mean pairwise spike count correlation across the popula-

tion (rSC = 0.04, Fig. 2C). Indeed, as the timescale of inhibition grows disordered networks

show a rapid change in mean pairwise correlation while two dimensional spatially ordered net-

works show a much more gradual rise in correlation (Fig. 2D). We remark that networks con-

strained to one spatial dimension also produce excessive synchrony (Fig. S1), meaning that two

(or more) spatial dimensions are required for robustly low but nonzero correlations. In sum,

when realistic spatial synaptic connectivity is paired with realistic temporal synaptic kinetics in

spatially ordered networks, internally generated population dynamics produces spiking dynam-

ics whose marginal and pairwise variability conform to experimental results.

Low dimensional variability and attentional modulation

The V1 and MT network is modeled by extending the spatially ordered balanced networks

with slow inhibition to include three layers: a bottom layer of independent Poisson processes

modeling thalamus, and middle and top layers of integrate and fire style neurons modeling V1

and MT, respectively (Fig. 3A and see Methods). We follow our past work with simplified

firing rate networks (7) and model a top-down attentional signal as an overall depolarization to

inhibitory neurons in the MT layer (Fig. 3A). This mimics cholinergic pathways that primarily

affect interneurons (30) and are thought to be engaged during attention (7). The increased

recruitment of inhibition during attention reduces the population-wide fluctuations in the MT

layer (Fig. 3B) and the pairwise spike count correlation of MT-MT neuron pairs (Fig. 3C),

while it increases the correlation of V1-MT neuron pairs (Fig. 3D), thereby capturing the main

aspects of the V1-MT dataset (Fig. 1Ci).

To this point we have measured shared variability with only population averaged pair-

wise spike count correlation, as done in many other studies (1, 2). A deeper understanding of

how shared variability is distributed over the population comes from dimensionality reduction
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tools (31). We partition the covariance matrix into the shared variability among the population

and the private noise to each neuron; the eigenvalues of the shared covariance matrix represent

the variance along each dimension (or latent variable), while the corresponding eigenvectors

represent the projection weights of the latent variables onto each neuron. Applying these tech-

niques to the multi-electrode V4 data (20) shows a single dominant eigenmode (Fig. 4Ai, results

from each session in Fig. S2). This mode influences most of the neurons in the population in

the same way (Fig. 4Aii, weights are dominant positive), and after subtracting the first mode

the mean residual covariances are very small (Fig. 4Aiii). Finally, attention affects population

variability primarily by quenching this dominant mode (Fig. 4Ai, compare orange and green

curves).

The dimensionality of shared variability offers a strong test to our cortical model. We ana-

lyzed the spike count covariance matrix from a subsampling of the spike trains from the third

layer of our network model (n = 50 neurons). The network with slow inhibition produced

shared variability with a clear dominant eigenmode that mimicked many of the core features

observed in the V4 data (Fig. 4Bi-iii). Further, the top-down attentional modulation of inhibi-

tion also suppressed this dominant mode (Fig. 4Bi, compare orange and green curves). This

agreement between model and data broke down when either inhibition was faster than the exci-

tation (Fig. 4Ci-iii), or inhibitory projections in the third layer were spatially broader than those

of excitation (Fig. 4Di-iii).

To gain intuition about the mechanics behind low dimensional shared variability we con-

sidered a two-dimensional firing rate model that captured the main dynamics of the spiking

network but was amenable to modern techniques in dynamical system theory (see Supplemen-

tary Text). In particular, we considered how the stability of the asynchronous state is lost as

the temporal and spatial scales of inhibition, ⌧i and �i, are varied. When ⌧i and �i match that

of excitation, a stable firing rate solution exists (Fig. 4E, grey region). When either ⌧i or �i
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Figure 4: Internally generated shared variability from the model network is low-
dimensional. (Ai) Eigenvalues of the first five modes of the shared component of the spike
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data sets are analyzed; the population had n = 43 ± 15 neurons. Error bars are standard error.
(Aii) The vector elements for the first (dominant) eigenmode. (Aiii) The mean covariance in
attended and unattended states before (raw) and after (residual) subtracting the first latent vari-
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increase, this stability is first lost at a particular spatial frequency (Fig. 4E, colored regions).

When ⌧i increases and excitation and inhibition project similarly (�i = �e) then firing rate sta-

bility is lost first at zero spatial frequency (Fig. 4Fi). This creates population dynamics with a

broad spatial pattern, allowing variability to be shared over the entire population, in agreement

with data. In contrast, when ⌧i increases and inhibition is lateral (�i > �e) then stability is

lost at a characteristic spatial scale (Fig. 4Fii). Finally, attentional modulations that depolarize

the inhibitory population expands the stable region in the bifurcation diagram (Fig. 4E, dashed

black line). In other words, attention increases the domain of firing rate stability (7), quenching

any tendency for patterned firing rate dynamics.

Chaotic population-wide dynamics reflects internally generated variability

The V1 and MT population data lead us to propose that shared variability has a sizable internally

generated component (Fig. 1Di, Dii). Further, our analysis of the simplified scalar model

showed that attention must quench a large portion of shared variability (Var(H); Fig. 1Ciii),

suggestive of a strong, network-wide nonlinearity. To understand how the three layer network

model creates variability with these properties we aimed to isolate the sources of externally

and internally generated fluctuations from one another. To this end, we fixed the spike train

realizations from the first layer (thalamic) neurons as well as the membrane potential states of

the second layer (V1), and only the initial membrane potentials of the third layer (MT) neurons

were randomized across trials (Fig. 5A). This produced deterministic network dynamics when

conditioned on activity from the first two layers, and consequently any trial-to-trial variability

is due to mechanics internal to the third layer.

Our three layer model follows classic work in balanced networks (8, 18, 22, 32), with spike

trains from third layer neurons in both the unattended and attended states having significant trial-

to-trial variability despite the frozen layer one and two inputs (Fig. 5B). To investigate how this

13

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/217976doi: bioRxiv preprint first posted online Nov. 11, 2017; 

http://dx.doi.org/10.1101/217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

4

32

45

15 24
32

45

L
3
 R

e
s
p
o
n
s
e
 (

s
p
/s

)

20 sec

10

E

0

50

100

150

trial 1

1864 ms

0

50

100

150

p
o

p
u

p
la

ti
o

n
 r

a
te

 (
s
p

/s
)

trial 2

1864 ms

0

50

100

150

trial 3

1864 ms

time (sec)

0 1 2 3

-100

0

100

200

d
if
fe

re
n

c
e

 (
s
p

/s
)

ffwd input

3

6

(p
A

)

D
Unattended

0

50

100

150

1864 ms

0

50

100

150

1864 ms

0

50

100

150

1864 ms

time (sec)

0 1 2 3

-100

0

100

200
ffwd input

3

6

(p
A

)

C
Attended

P
o
p
u
la

ti
o
n
 

v
a
ri
a
n
c
e
 (

s
p
/s

)2

L2 Output (sp/s) L2 Output (sp/s)

F

Frozen spike train 

realizations

Frozen

initial V
m

A

50 ms

40 mV

Layer 1 Layer 2 Layer 3 

trial 3

trial 2

trial 1

Random

initial V
m

10-2 10-1 100

B

Fano Factor

P
ro

b
a
b
il
it
y

15 24

Figure 5: Caption is on next page.

14

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/217976doi: bioRxiv preprint first posted online Nov. 11, 2017; 

http://dx.doi.org/10.1101/217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Chaotic population firing rate dynamics is quenched by attention. (A) Schematic
of the numerical experiment. The spike train realizations in layer one and the initial states of
the membrane potential of layer two neurons are identical across trials, while in each trial we
randomized the initial states of the layer three neuron’s membrane potentials. (B) Fano factor
distribution of layer three excitatory neurons in the attended (mean=0.25) and unattended states
(mean=0.37) with frozen layer one and two inputs. (C) Three representative trials of the layer
three excitatory population rates in the attended state (left row 1-3). Bottom row: difference
of the population rates across 20 trials. Right (row 1-3): Snapshots of the neuron activity at
time point 1864 ms. Each dot is a spike within 2 ms window from the neuron at that location.
Right bottom: the synaptic current each layer three neuron receives from layer two at time 1864
ms. (D) same as panel C for the network in the unattended state. (E) Trial-to-trial variance of
layer three population rates as a function of time; right: mean variance across time. (F) The
layer three population rate tracks the layer two population rate better in the attended state. Both
outputs and responses are smoothed with a 200 ms window.

microscopic (single neuron) variability possibly manifests as macroscopic population activity

we considered the trial-to-trial variability of the population-averaged instantaneous firing rate.

While the population firing rate is dynamically variable in the attended state, it is nevertheless

nearly identical across trials (Fig. 5C, left), resulting in very small trial-to-trial variance of the

population rate (Fig. 5E, orange). A reflection of this low population variability is the faithful

tracking of the spatiotemporal structure of layer two outputs by layer three responses (Fig. 5C,

right; F orange). This tracking supports the high correlation between layer two and three spiking

(Fig. 3D).

In contrast, in the unattended state the asynchronous solution is unstable, resulting in population-

wide recruited activity. These periods of spatial coherence across the network are trial-to-trial

unpredictable, contributing sizable trial-to-trial variability to population activity (Fig. 5D, left;

E, green). This internal variability degrades the tracking of layer two outputs (Fig. 5D, right;

F, green), ultimately lowering the correlation between layer two and three spiking (Fig. 3D).

Thus, while the network model is chaotic in both attended and unattended states, the chaos is

population-wide only in the inhibition deprived unattended state.
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Discussion

The study of spatiotemporal pattern formation in neuronal populations has a long and rich his-

tory of study in both theoretical (33) and experimental contexts (34). However, a majority of

these studies have focused on trial-averaged activity, with tacit assumptions about how spik-

ing variability emerges (but see (35) and (12)). There is a parallel research program aimed at

understanding how variability is an emergent property of recurrent networks (8, 9, 22, 32), yet

analysis is often restricted to simple networks with disordered connectivity. In this study we

have combined these traditions with the goal of understanding the genesis and modulation of

population-wide, internally generated cortical variability.

Our solution was to extend classical work in balanced cortical networks (8, 11) to include

two well accepted truths. First, cortical connectivity has a wiring rule that depends upon neuron

pair distance (23, 24). Theoretical studies that model distance dependent coupling commonly

assume that inhibition projects more broadly than excitation (33, 35, 36) (but see (25)). How-

ever, measurements of local cortical circuitry show that excitation and inhibition project on

similar spatial scales (23, 37), and long-range excitation is known to project more broadly than

inhibition (38). Our work shows that this architecture is required for internally generated pop-

ulation variability to be low dimensional (Fig. 4Bi and Di). The second truth is that inhibition

has temporal kinetics that are slower than excitation (26–29). Past theoretical models of recur-

rent cortical circuits have assumed that inhibition is not slower than excitation (8, 11, 25, 39),

including past work from our group (10, 12). Consequently, these studies could only capture

the residual correlation structure of population recordings once the dominant eigenmode was

subtracted (12, 13); in these cases the residual accounted for less than ten percent of the true

shared variability.

The above narrative is somewhat revisionist; there are several well known theoretical studies
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in disordered networks where one dimensional population-wide correlations do emerge, notably

in networks where rhythmic (40) or ‘up-down’ (36, 39) dynamics are prominent. However, the

lack of wiring structure in such model networks ensures that all neuron pairs experience the

same fluctuation, justifying a simple one dimensional mean field. In other words, any shared

variability would be one dimensional by construction. Indeed, balanced networks with clustered

wiring (10) (where simple one dimensional field theories do not apply) show higher dimensional

shared variability (13).

Rich spatiotemporal chaos is a hallmark feature of systems that are far from equilibrium in

fluid mechanics, chemistry and biology (41). Networks of model neurons with strong recur-

rent excitation and inhibition also show chaotic dynamics, though past work has only studied

dynamics restricted to the asynchronous state in spatially disordered networks (22, 42). Our

extension to spatial networks shows that network-wide chaotic activity can be prominent in the

weakly correlated state as well. Modern theories of computing in distributed systems often re-

quire chaotic dynamics to provide a rich repertoire of network states both in silico (43) as well as

recently in analogue neuronal-inspired hardware (44). Our model provides a framework where

the spatial scale of chaotic dynamics is tunable; uncovering the consequences for computation

in this framework is an intriguing next step.
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Materials and Methods
Network model description. The network consists of three layers. Layer 1 is modeled by
a population of N

1

= 2500 excitatory neurons, the spikes of which are taken as independent
Poisson processes with a uniform rate r

1

= 10 Hz. Layer 2 and Layer 3 are recurrently coupled
networks with excitatory (↵ = e) and inhibitory (↵ = i) populations of N

e

= 40000 and
N

i

= 10000 neurons, respectively. Each neuron is modeled as an exponential integrate-and-fire
(EIF) neuron whose membrane potential is described by:

Cm

dV ↵
j

dt
= �gL

�
V ↵
j � EL

�
+ gL�T e

(

V ↵
j �VT )/�T

+ I↵j (t). (1)

Each time V ↵
j (t) exceeds a threshold V

th

, the neuron spikes and the membrane potential is held
for a refractory period ⌧

ref

then reset to a fixed value V
re

. Neuron parameters for excitatory
neurons are ⌧m = Cm/gL = 15 ms, EL = �60 mV, VT = �50 mV, V

th

= �10 mV, �T = 2

mV, V
re

= �65 mV and ⌧
ref

= 1.5 ms. Inhibitory neurons are the same except ⌧m = 10 ms,
�T = 0.5 mV and ⌧

ref

= 0.5 ms. The total current to each neuron is:

I↵j (t)

Cm

=

NFX

k=1

J↵F
jkp
N

X

n

⌘F
�
t� tF,kn

�
+

X

�=e,i

N�X

k=1

J↵�
jkp
N

X

n

⌘�
�
t� t�,kn

�
+ µ↵, (2)

where N = Ne +Ni is the total number of the network population. Postsynaptic current is

⌘�(t) =
1

⌧�d � ⌧�r

⇢
e�t/⌧�d � e�t/⌧�r , t � 0

0, t < 0

(3)

where ⌧
er

= 1 ms, ⌧
ed

= 5 ms and ⌧
ir

= 1 ms, ⌧
id

= 8 ms. The feedforward synapses from Layer
1 to Layer 2 have the same kinetics as the recurrent excitatory synapse, i.e. ⌘(2)F (t) = ⌘

e

(t). The
feedforward synapses from Layer 2 to Layer 3 have a fast and a slow component.

⌘
(3)

F (t) = p
f

⌘
e

(t) + p
s

⌘s(t)

with p
f

= 0.2, p
s

= 0.8. ⌘s(t) has the same form as Eq. 3 with a rise time constant ⌧ sr = 2

ms and a decay time constant ⌧ sd = 100 ms. The excitatory and inhibitory neurons in Layer 3
receive static current µe and µi, respectively.

Neurons on the three layers are arranged on a uniform grid covering a unit square � =

[0, 1]⇥ [0, 1]. The probability that two neurons, with coordinates x = (x
1

, x
2

) and y = (y
1

, y
2

)

respectively, are connected depends on their distance measured periodically on �:

p↵�(x,y) = p̄↵�g(x1

� y
1

;↵�)g(x2

� y
2

;↵�). (4)

Here p̄↵� is the mean connection probability and

g(x; �) =
1p
2⇡�

1X

k=�1

e�(x+k)2/(2�2
) (5)
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is a wrapped Gaussian distribution. Excitatory and inhibitory recurrent connection widths of
Layer 2 are ↵(2)

rec

:= ↵
(2)

e

= ↵
(2)

i

= 0.1 and feedforward connection width from Layer 1 to Layer
2 is ↵(2)

↵wd

= 0.05. The recurrent connection width of Layer 3 is ↵(3)

rec

= 0.2 and the feedforward
connection width from Layer 2 to Layer 3 is ↵(3)

↵wd

= 0.1. A presynaptic neuron is allowed to
make more than one synaptic connection to a single postsynaptic neuron.

The recurrent connectivity of Layer 2 and Layer 3 have the same synaptic strengths and
mean connection probabilities. The recurrent synaptic weights are J

ee

= 80 mV, J
ei

= �240

mV, J
ie

= 40 mV and J
ii

= �300 mV. Recall that individual synapses are scaled with 1/
p
N

(Eq. 2); so that, for instance, Jee/
p
N ⇡ 0.36 mV. The mean connection probabilities are

p̄
ee

= 0.01, p̄
ei

= 0.04, p̄ie = 0.03, p̄
ii

= 0.04. The out-degrees are Kout

ee

= 400, Kout

ei

= 1600,
Kout

ie

= 300 and Kout

ii

= 400. The feedforward connection strengths from Layer 1 to Layer
2 are J

(2)

eF

= 140 mV and J
(2)

iF

= 100 mV with probabilities p̄
(2)

eF

= 0.1 and p̄
(2)

iF

= 0.05 (out-
degrees Kout

eF2

= 4000 and Kout

eF2

= 500). The feedforward connection strengths from Layer 2 to
Layer 3 are J3

eF

= 25 mV and J3

iF

= 15 mV with mean probabilities p̄(3)
eF

= 0.05 and p̄
(3)

iF

= 0.05
(out-degrees are Kout

eF3

= 2000 and Kout

iF3

= 500). Only the excitatory neurons in Layer 2 project
to Layer 3.

The spatial model in Fig. 2 contains only Layer 1 and Layer 2. In the model with disor-
dered connectivity, the connection probability between a pair of neurons is p̄↵� , independent of
distance. Other parameters are the same as the spatial model. The decay time constant of IPSC
(⌧

id

) was varied from 1 to 15 ms (Fig. 2D). The rise time constant of IPSC (⌧
ir

) is 1 ms when
⌧
id

> 1 ms and 0.5 ms when ⌧
id

= 1 ms.
The parameters used in Fig. 3C,D are µi = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] pA and µE =

0 pA. The mean firing rates in Layer 2 are r(2)
e

= 19 Hz and r
(2)

i

= 9 Hz. In the further analysis
(Fig. 4Bi-Biii and Fig. 5), we used µI = 0.2 pA for the unattended state and µI = 0.35 pA
for the attended state. In simulations of the spatial model with fast inhibition (Fig. 4Ci-Ciii),
⌧
ir

= 0.5 ms, ⌧
id

= 1 ms. In simulations of the spatial model with broad inhibitory projection
(Fig. 4Di-Diii), ↵(3)

e

= 0.1, ↵(3)

i

= 0.2. Other parameters are not changed.
All simulations were performed on the CNBC Cluster in the University of Pittsburgh. All

simulations were written in a combination of C and Matlab (Matlab R 2015a, Mathworks). The
differential equations of the neuron model were solved using forward Euler method with time
step 0.01 ms.

Experimental methods Each of the two datasets (recordings from V4 and recordings from
V1 and MT) collected from two different rhesus monkeys as they performed an orientation-
change detection task. All animal procedures were in accordance with the Institutional Animal
Care and Use Committee of Harvard Medical School, University of Pittsburgh and Carnegie
Mellon University.

For analysis in Fig. 1Bi and Fig. 4Ai-Aiii, data was collected with two microelectrode ar-
rays implanted bilaterally in area V4 (1). We use trials with correct detection for analysis and
the first and last stimulus presentations in each trial were not analyzed, to prevent transients
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due to stimulus appearance or change from affecting the results. Spike counts during the sus-
tained response (120 - 260 ms after stimulus onset) are considered for the correlation and factor
analysis. Neurons recorded from either the left or right hemisphere in one session are treated
separately. Two sessions from the original study were excluded due to inadequate trials for
factor analysis. There are a total of 42,103 trials for 72,765 pairs from 72 recording sessions.

For analysis in Fig. 1Ci, data was collected with one microelectrode array implanted in
area V1 and a single electrode or a 24-channel linear probe inserted into MT (2). The analysis
was performed on responses to 100% contrast stimulus presentations during correct trials before
direction change with the exception of the first stimulus presentation. Spike counts are measured
30230 ms after stimulus onset for V1 and 50250 ms after stimulus onset for MT to account for
the average visual latencies of neurons in both areas. There are a total of 34,404 V1 pairs from
42 sessions in each attention condition, 1631 V1-MT pairs from 32 recording sessions and 270
MT-MT pairs from 31 sessions.

Statistical methods To compute the noise correlation of each simulation, 500 neurons were
randomly sampled from the excitatory population of Layer 3 and Layer 2 within a [0, 0.5]x[0,
0.5] square (considering periodic boundary condition). Spike counts were computed using a
sliding window of 200 ms with 1 ms step size and the Pearson correlation coefficients were
computed between all pairs. Neurons of firing rates less than 2 Hz were excluded from the
computation of correlations. In Fig. 3C,D, for each µi there were 50 simulations and each
simulation was 20 sec long. Connectivity matrices and the initial states of each neuron’s mem-
brane potential were randomized in each simulation. The first 1 second of each simulation was
excluded from the correlation analysis. Standard error was computed based on the mean corre-
lations of each simulation. For simulations of Fig. 2D, there was one simulation of 20 seconds
per ⌧

id

and the connectivity matrices were randomized for each simulation. To compute the
noise correlation, 1000 neurons were randomly sampled in the excitatory population of Layer
2 within a [0, 0.5]x[0, 0.5] square. Correlations are computed between firing rates that are
smoothed with a Gaussian window of width 10 ms.

To study the chaotic population firing rate dynamics of Layer 3 (Fig. 5), we fixed the spike
trains realizations from Layer 1 neurons, the membrane potential states of the Layer 2 neurons
and all connectivity matrices. Only the initial membrane potentials of Layer 3 neurons were
randomized across trials. There were 10 realizations of Layer 1 and Layer 2, each of which
was 20 sec long. For each simulation of Layer 2, 20 repetitions with different initial conditions
were simulated for Layer 3. The connectivity matrices in Layer 3 were the same across the 20
repetitions but different for each realization of Layer 1 and Layer 2. The realizations of Layer
1 and Layer 2 and the connectivity matrices were the same for the attended and unattended
states. Trial-to-trial variance of Layer 3 population rates (Fig. 5E) was the variance of the mean
population rates of the Layer 3 excitatory population, smoothed by a 200 ms rectangular filter,
across the 20 repetitions. The first second of each simulation was discarded.

Factor analysis assumes spike counts of n simultaneously recorded neurons x 2 Rn⇥1 is a
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multi-variable Gaussian process

x ⇠ N (µ, LLT
+ )

where µ 2 Rn⇥1 is the mean spike counts, L 2 Rn⇥m is the loading matrix of the m latent
variables and  2 Rn⇥1 is a diagonal matrix of independent variances for each neuron. We
choose m = 5 and compute the eigenvalues of LLT , �i (i = 1, 2, . . . , 5), ranked in descending
order. We compute the residual covariance after subtracting the first mode as

Q = Cov(x, x)� L
1

⇥ L0
1

where Cov(x, x) is the raw covariance matrix of x and L
1

is the loading matrix when fitting with
m = 1. The mean raw covariance and residual (Fig. 4Aiii-Diii) are the mean of the off-diagonal
elements of Cov(x, x) and Q, respectively. When applying factor analysis on model simulations
(Fig. 4B-D), we randomly selected 50 excitatory neurons from Layer 3, whose firing rates were
larger than 2 Hz in both the unattended and attended states. There were 10 non-overlapping
sampling of neurons and we applied factor analysis on each sampling of neuron spike counts.
There were 15 simulations with fixed connectivity matrices, each of which was 20 seconds
long. Spike trains were truncated into 140-ms spike count window with a total of 2025 counts
per neuron. In simulations with fast inhibition (Fig. 4Ci-Ciii) and broad inhibitory projection
(Fig. 4Di-Diii), the connectivity matrices were the same as those in simulations of the original
model (Fig. 4Bi-Biii).

Supplementary Text
Hidden variable model. First, we consider the attentional effect on noise correlations in one
cortical area. Let R be the response variable of the neurons in that area and H be the external
source of variability which projects to R with strength �; R = X + �H . Here we take the
variance of H , Var↵(H), to be dependent on the attentional state ↵ 2 {U,A}, and for now X is
an attention independent source of fluctuating input. Denote PH =

�2VarU (H)

VarU (R)

=

�2VarU (H)

Var(X)+�2VarU (H)

as the influence of H on R (0 < PH < 1). Then the constraint on H is:

�

U�A
Var(H)

VarU(H)

=

1

PH

�

U�A
Var(R)

VarU(R)

. (6)

Here �

U�A
Var(H) = VarU(H) � VarA(H) (same for �

U�A
Var(R)). The population data provide

values for �
U�A

Var(R)/VarU(R). In Fig. 1Biii (main text) the change in Var(H), �
U�A

Var(H)/VarU(H),
is plotted as a function of the influence of H on R, PH , with the V4 data (Fig. 1Bi) determining
�

U�A
Var(R)/VarU(R) = 0.3.
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Next, we consider the correlation between two cortical areas. Let R be the neural response
from MT and X be the neural response from V1. Suppose all the variability in R is from X and
the transfer function of X to R can be linearly approximated as �R = ↵�X , then

Var(R) = ↵2Var(X),

cov(R,X) = ↵Var(X).

which gives
Var(R) = cov(R,X)

2/Var(X). (7)

Hence any decrease in Var(R) by attention predicts a decrease in cov(R,X), which is in con-
tradiction with the electrophysiological recordings (2) (Fig. 1Bi and Ci).

Assume a hidden source of variability, H , that projects to both R and X with strengths �
and , respectively. Specifically, R = ↵X + �H and X = X

0

+ H , where cov(X
0

, H) = 0.
Suppose Var(X) = 1 and � and  are attention independent, then

Var(R) = ↵2

+

�
�2

+ 2�↵
�

Var(H),

cov(R,X) = ↵ + �Var(H).

In order to have an attention-mediated simultaneous reduction in Var(R) and an increase in
cov(R,X) we need ↵ increases and Var(H) decreases with attention. The relative change in
cov(R,X) by attention is

�

A�U
cov(R,X)

covU
(E,X)

=

�

A�U
↵� � �

U�A
Var(H)

↵U + �VarU(H)

. (8)

An attention-mediated increase of the correlation between V1 ans MT implies �
A�U

cov(R,X) >

0, which gives
�

A�U
↵ > � �

U�A
Var(H). (9)

The reduction in Var(R) by attention is

�

U�A
Var(R) = �

�
↵2

A � ↵2

U

�
+ �2

�

U�A
Var(H) + 2�

�
↵UVarU(H)� ↵AVarA(H)

�

= �
✓
2↵U + �

A�U
↵

◆
�

A�U
↵ + �2

�

U�A
Var(H) + 2�↵U �

U�A
Var(H)� 2�VarA(H) �

A�U
↵

= �2

�

U�A
Var(H)� 2↵U �

A�U
cov(R,X)�

✓
�

A�U
↵

◆
2

� 2�VarA(H) �

A�U
↵

Hence the relative reduction in Var(R) is

�

U�A
Var(R)

VarU(R)

=

�

U�A
Var(H)

VarU(H)

PH�2↵U

�

A�U
cov(R,X)

covU
(R,X)

covU
(R,X)

VarU(R)

�

✓
�

A�U
↵

◆
2

+ 2�VarA(H) �

A�U
↵

VarU(R)

(10)
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The second term from the RHS of Eq. (10) is

2↵U
covU

(R,X)

VarU(R)

�

A�U
cov(E,X)

covU
(E,X)

=

2↵2

U + 2�↵UVarU(H)

↵2

U + (�2

+ 2�↵U)VarU(H)

�

A�U
cov(R,X)

covU
(R,X)

> (1� PH)

�

A�U
cov(R,X)

covU
(R,X)

With inequality (9), the third term from the RHS of Eq. (10) is
✓
�

A�U
↵

◆
2

+ 2�VarA(H) �

A�U
↵

VarU(R)

=

�

A�U
↵

✓
�

A�U
↵ + 2�VarA(H)

◆

�2VarU(H)

PH

>

✓
� �

U�A
Var(H)

◆✓
� �

U�A
Var(H) + 2�VarA(H)

◆

�2VarU(H)

PH

=

�22

�

U�A
Var(H)

�
VarU(H) + VarA(H)

�

�2VarU(H)

PH

> 2VarU(H)

�

U�A
Var(H)

VarU(H)

PH

Hence,

�

U�A
Var(R)

VarU(R)

<
�
1� 2VarU(H)

� �

U�A
Var(H)

VarU(H)

PH �
�

A�U
cov(R,X)

covU
(R,X)

(1� PH)

which gives the constraint on H as

�

U�A
Var(H)

VarU(H)

PH >
�

U�A
Var(R)

VarU(R)

1

1� 2VarU(H)

+

�

A�U
cov(R,X)

covU
(R,X)

1� PH

1� 2VarU(H)

. (11)

where 0 < 1 � 2VarU(H) =

VarU (X0)

Var(X)

< 1, since Var(X) = Var(X
0

) + 2Var(H) = 1.

Therefore, the lower bound on
�

U�A
Var(H)

VarU (H)

PH increases with the relative increase in cov(R,X),
�

A�U
cov(R,X)

covU (R,X)

, and the projection strength of H on X , .

Fig. 1Biii is plotted using Eq. (6) and Fig. 1Ciii is plotted using Eq. 11 with
�

A�U
cov(R,X)

covU (R,X)

= 1

and 2Var(H) ranges from 0 to 0.5 for different curves.
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Neural field model and stability analysis We use a two dimensional neural field model to
describe the dynamics of population rate. Consider the neural field equations

⌧↵
@r↵(x, t)

@t
= �r↵ + �(w↵e ⇤ re + w↵i ⇤ ri + µ↵) (12)

where r↵(x, t) is the firing rate of neurons in population ↵ = e, i near spatial coordinates
x 2 [0, 1] ⇥ [0, 1]. The symbol ⇤ denotes convolution in space, µ↵ is a constant external input
and w↵�(x) = w↵�g(x; ��) where g(x; ��) is a two-dimensional wrapped Gaussian with width
parameter �� , � = e, i (3). The transfer function is a threshold-quadratic function, �(x) =

[x2

]

+

. The timescale of synaptic and firing rate responses are implicitly combined into ⌧↵. In
networks with approximate excitatory-inhibitory balance, rates closely track synaptic currents
(4), so ⌧↵ represents the synaptic time constant of population ↵ = e, i.

For constant inputs, µe and µi, there exists a spatially uniform fixed point, which was com-
puted numerically using an iterative scheme (3). Linearizing around this fixed point in Fourier
domain gives a Jacobian matrix at each spatial Fourier mode (3, 5)

J(~n) =


(�1 + ge ewee(~n)) /⌧e ge ewei(~n)/⌧e

gi ewie(~n)/⌧i (�1 + gi ewii(~n)) /⌧i

�
.

where ~n = (n
1

, n
1

) is the two-dimensional Fourier mode, ew↵�(~n) = w↵� exp(�2k~nk2⇡2�2

�) is
the Fourier coefficient of w↵�(x) with k~nk2 = n2

1

+n2

2

and ga is the gain, which is equal to �0
(r↵)

evaluated at the fixed point. The fixed point is stable at Fourier mode ~n if both eigenvalues
of J(~n) have negative real part. A Hopf bifurcation occurs when complex eigenvalues with
positive real part emerge at the uniform Fourier mode, ~n = (0, 0). A Turing-Hopf bifurcation
occurs when complex eigenvalues with positive real part emerge at any non-uniform Fourier
mode, ~n 6= (0, 0). Note that stability only depends on the wave number, k = k~nk, so Turing-
Hopf instabilities always occur simultaneously at all Fourier modes with the same wave number.

Simulations were performed by discretizing space uniformly into a 100⇥100 grid and using
a forward Euler method to solve Eq. (12). Parameters were wee = 80, wei = �160, wie = 120,
and wii = �200, µe = 0.48 and µi = 0.32. For the stability analysis in Fig. 4E, ⌧i varies from
2.5 ms to 25 ms, �i varies from 0.05 to 0.2, and ⌧e = 5 ms and �e = 0.1. Destabilizing the
inhibitory population (µI = 0.5) expands the stable region (Fig. 4E, black dashed).
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Supplementary figures
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Figure S1: Supplementary Figure S1: (A) One-dimensional spatial model shows rapid increase
in mean pairwise correlation with increasing time scale of inhibition (compare with Fig. 2D).
(B) Example rasters of network activity when ⌧i = 10 ms. (C) Same as B with ⌧i = 15 ms.
Parameters of the one dimensional model are the same as those in the two-dimensional spatial
model in Fig. 2, except that neurons are ordered on interval [0, 1].
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Figure S2: Supplementary Figure S2: Factor analysis of the multi-electrode recordings from
V4 (1). (A) Eigenvalues of the first five modes of the shared component of the spike count
covariance matrix. Each line is for data from each recording session (72 in total). (B) Same
as A for the attended state. (C) The difference of the largest eigenvalue and the difference
of mean covariance between unattended and attended states are correlated. (D) Histogram of
the modes that maximize the cross-validated data likelihood across sessions. More details see
Experimental methods and Statistical methods.

Supplementary Movie Captions
Movie S1: Spiking activities of a spatially ordered network with fast inhibition (Fig. 2Aii).
Each black dot indicates that the neuron at spatial position (x; y) fired within one millisecond
of the time stamp shown on top.

Movie S2: Same as Movie S1 for a spatially ordered network with slow inhibition (Fig. 2Aiv)

References
1. M. Cohen, J. Maunsell, Nature neuroscience 12, 1594 (2009).

2. D. A. Ruff, M. R. Cohen, Journal of Neuroscience 36, 7523 (2016).

10

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/217976doi: bioRxiv preprint first posted online Nov. 11, 2017; 

http://dx.doi.org/10.1101/217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. R. Rosenbaum, B. Doiron, Physical Review X 4, 021039 (2014).

4. A. Renart, et al., Science 327, 587 (2010).

5. R. Pyle, R. Rosenbaum, Physical Review Letters 118, 018103 (2017).

11

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/217976doi: bioRxiv preprint first posted online Nov. 11, 2017; 

http://dx.doi.org/10.1101/217976
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Manuscript_Huang
	Supplementary_Materials_Huang

