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Abstract

Neurophysiological studies of cognitive mechanisms such as visual attention typically
ignore trial-by-trial variability and instead report mean differences averaged across many tri-
als. Advances in electrophysiology allow for the simultaneous recording of small popula-
tions of neurons, which may obviate the need for averaging activity over trials. We recently
introduced a method called the attention axis that uses multi-electrode recordings to provide
estimates of attentional state of behaving monkeys on individual trials. Here, we refine this
method to eliminate problems that can cause bias in estimates of attentional state in certain
scenarios. We demonstrate the sources of these problems using simulations and propose
an amendment to the previous formulation that provides superior performance in trial-by-
trial assessments of attentional state.

Introduction

The advent of multi-channel microelectrode arrays has made it easier to simultaneously record
from small populations of neurons. The richness of the data obtained from arrays requires
appropriate analyses for describing a population of neurons that encodes sensory, motor, or
cognitive information (the “population code”). Various techniques have been used to charac-
terize a neuronal population’s responses [1-4].

We recently introduced a method for using population activity to estimate the attentional
state of subjects: the “attention axis” [5]. We recorded extracellularly from small populations of
neurons in visual area V4 during a change-detection task that required spatial attention. The
attention axis allowed us to infer the attentional state of the animal within relatively short peri-
ods, including single trials and individual stimulus presentations of only 200 ms. We found
that on trials in which the neurons indicated that the monkey was attending strongly to one
location, the monkey was better able to detect stimulus changes at that location. Thus, the
attention axis might advance our ability to study visual attention and other cognitive processes
at behaviorally relevant timescales.
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However, we have since discovered that certain biologically plausible scenarios can lead to
distortions in the attention axis analysis that can bias measurements of cognitive state. Two dif-
ferent factors, in particular, can lead to apparent changes in position on the attention axis
where none exist. First, when the attention axis is constructed using populations of neurons
with responses that differ little between different attentional conditions, measurements can be
biased toward the unattended location. Second, a bias in the same direction can occur when
the attention axis is constructed using small samples of neuronal responses that provide poor
estimates of the underlying activity. It is important to identify and address the sources of these
distortions to ensure relatively unbiased estimates of neuronal activity and behavior.

We describe here a refinement of the attention axis that effectively eliminates these biases
by equating them across behavioral conditions and thereby minimizing their contributions to
our results. For comparison, we re-compute previously reported results using our improved
metric. The corrected measures show somewhat less variance in attentional state overall, but
the refined attention axis retains its ability to capture moment-by-moment fluctuations in
attention that otherwise would be undetected by conventional trial-averaging measures.

Materials and Methods

Because the construction of the attention axis is the focus of this work, we briefly outline the
analysis below. Details were provided in previous work [1].

Monkeys were trained to attend to one of two stimuli, flashed on and off simultaneously,
and to respond with an eye movement to a stimulus when one stimulus changed its orientation.
During each daily session, we recorded simultaneously from approximately 40 single units and
multiunit clusters in each hemisphere of visual area V4 using chronically implanted multi-
electrode arrays. One stimulus was located in each visual hemifield, in the receptive fields of
neurons recorded in the contralateral hemisphere. To build the attention axis, neuronal
responses to the stimulus presentations immediately preceding the stimulus change (stimulus
“n-17) were sampled on individual trials and plotted in N-dimensional space, where N is the
number of simultaneously recorded single units and multiunit clusters. Trials in which the
monkey correctly detected the stimulus change (“Hits”) at the cued location were divided into
two conditions, “attend-left” and “attend-right”, based on where the animal was cued to attend
to at the start of each block of trials. The line connecting the means of neuronal responses on
Hit trials in each attention condition was defined as the original attention axis [5]. Neuronal
responses from correctly detected changes (“Hits”) and missed changes (“Misses”) were then
projected onto the attention axis and individual projections (i.e., the position on the attention
axis) were used to infer the animals’ trial-by-trial state of attention. Mean activity in the attend-
left and attend-right conditions was normalized to -1 and 1, respectively, to facilitate compari-
sons across recording sessions (e.g., Fig 1A, top). The revised attention axis is broadly applica-
ble to simultaneous neuronal recordings in any brain region and from any microelectrode
technology. It does not require simultaneous recordings from both brain hemispheres [5].
Also, the attention axis treats every neuron in the same manner regardless of cell type, and it
does not take into account noise correlations or other forms of neuronal interactions.

Two adult rhesus macaques, Macaca mulatta, weighing 9 and 12 kg, were purchased from
the New England Primate Research Center and pair-housed in Harvard Medical School’s ani-
mal facilities in accordance with University policies and the USA Public Health Service Guide
for the Care and Use of Laboratory Animals. Neurophysiological data re-analyzed in this paper
are from experiments approved by and conducted under the auspices of the Institutional Ani-
mal Care and Use Committee of Harvard Medical School [5, 6]. Monkeys were fed nutrient-
rich biscuits as well as an assortment of supplemental treats (e.g., bananas, raisins, peanuts)
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Fig 1. Attention axis construction and outcomes. (A) Schematic of two overlapping uniform distributions (hatched and yellow). Samples A and T are
always drawn from the yellow distribution and can be located in range y or z. Sample B is drawn from the hatched distribution and can be located in range x or
y. Samples A and B are used to construct an attention axis, which is normalized to A = 1 and B = -1. (B) Representation of possible outcomes and
probabilities given samples A and T only. Fill colors show probabilities of sample T being less (black) or greater (white) than A. Unbiased sampling leads to
equal total areas for black and white cells. (C) Representation of all possible outcomes for the value of T on the attention axis. Same conventions as B, except
probabilities are relative to 1 on the attention axis. The excess of orange relative to blue indicates that sampling is biased towards values of T that are less
than 1 on the attention axis.

doi:10.1371/journal.pone.0136570.g001

daily. Enrichment activities typically included foraging for treats, music, movies, human inter-
action, and standard toys including mirrors. Animal health was monitored daily by trained
professionals. The effects of water restriction were monitored closely by checking the weight,
stool, and behavior of the animals; significant deviations of any of these factors led to ad libi-
tum water access until symptoms resolved. Animals worked to satiation in the laboratory or
were supplemented with water in their cages. Loose restraints were used to guide the animals
into the chairs. Time in the laboratory and exposure to the visual attention task were increased
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gradually over the course of several weeks using operant conditioning and only positive rein-
forcement. Daily experimental sessions were terminated when the animals lost interest in per-
forming the task.

Simulations were carried out in Matlab 2012a and collection of physiological data was previ-
ously described [5].

Results

The attention axis measures the attentional state of the subject during a brief period (here,
200 ms) based on the average modulation of neuronal responses between different attention
conditions (e.g., attend-left vs. attend-right). Below, we illustrate potential problems with this
measure as it was originally applied [5, 6]. The first two issues (Figs 1 and 2) can generate dif-
ferent projections on Hit and Miss trials even when there is no meaningful change in the
underlying neuronal activity. These issues can be eliminated by using the modified analysis
described below. We verify this refined approach using simulations (Fig 3) and discuss limita-
tions of the sensitivity of attention axis measurements. Finally, we re-plot central results from
our previous work using the refined attention axis (Figs 4-6).

The first potential problem with the attention axis occurs when the responses used to con-
struct the axis are overlapping and the estimates of the response means are noisy. We demon-
strate this problem in simulations using a highly reduced case in which the axis is constructed

attend left attend right

attend
left/right

neuron 2
response

response
Fig 2. Multidimensional regression. The responses of two neurons in two conditions, attend-left and
attend-right. Neuron 1’s response to attend-right is greater than that to attend-left, and its responses in both
conditions are noiseless, as illustrated by the impulse functions (top) and vertical dashed lines. The response
of neuron 2 is noiseless in the attend-left condition, but drawn from a uniform distribution in the attend-right

condition (impulse function and spanned range on right). The attention axis (double-sided arrow) connects
samples A and B.

doi:10.1371/journal.pone.0136570.g002
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Fig 3. Average Hit (blue) and Miss (red) positions on the original (A), revised (B), and normalized revised (C) attention axes for attend-right
responses only. Correct values are indicated by dotted lines. The original attention axis (A) overestimates differences (black, bottom) between Hits and
Misses when modulation by attention is weak. The refined attention axis (B) underestimates the true separation of 0.25 (dotted line) when modulation by
attention is weak. (C) Re-normalizing the revised attention axis makes it easier to estimate Hit-Miss differences at modulations greater than a d' of ~0.1. Error
bars (top row) are standard error and usually less than the thickness of the line itself.

doi:10.1371/journal.pone.0136570.g003

using a single sample from attend-right responses (A) and a single sample from attend-left
responses (B) of a single neuron. In this example, the response estimates A and B are random
samples drawn from two uniform distributions that overlap by 50% (Fig 1A, hatched and yel-
low). A single-trial test sample (T) is also drawn from the attend-right distribution. If the atten-
tion axis provides unbiased measures, the expected position for the test sample T on the

. ) ) - |
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Fig 4. Behavioral performance as a function of attention axis position. Left, Projections on the original attention axis for each stimulus location (Fig 2F
from [5]). Horizontal line indicates mean proportion correct across trials. Right, Same data combined across stimulus locations plotted on the original
attention axis (red line) and re-plotted on the revised attention axis (blue line).

doi:10.1371/journal.pone.0136570.9004
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Fig 5. Psychometric curves as a function of attention axis position using the original (A; compare with Fig 1B from [6]) and revised (right) attention
axes. Orientation changes were normalized to the behavioral threshold (63% correct) for each recording session and then binned into five equally sized bins.
Trials were placed into seven equally sized bins according to position on the attention axis ranging from strong (red) to weak (blue) attentional modulation.

doi:10.1371/journal.pone.0136570.g005
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Fig 6. Attention axis positions are correlated when the axis is constructed using neurons recorded from the same hemisphere, but uncorrelated
for those across left (L) and right (R) hemispheres. (A), original attention axis, Fig 6 from [5]. (B), revised attention axis.

doi:10.1371/journal.pone.0136570.g006
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attention axis must be 1, because it is drawn from the same distribution as A. We will show
that this is not the case.

Samples A, B, and T might lie anywhere within their respective distributions. Here, for sim-
plicity we distinguish cases where the samples lie in the left or right halves of the two distribu-
tions (labeled x, y and z in Fig 1A). By construction, A and T are equally likely to lie in y and z,
and B is equally likely to lie in x or y. The probability that T < A is 0.5. Fig 1B illustrates specific
outcomes for the locations of A and T and their probabilities. Because A and T are individually
equally likely to fall in range y or z, the area of each of the four cells in Fig 1B corresponds to a
probability of 0.25. When T'is in y and A is in z, T will always lie to the left of A (black in Fig
1B). When T'isin z and A is in y, T will always lie to the right of A (white in Fig 1B). When A
and T are both in the same range (e.g., bothiny), T < A and T > A are equally likely (the
upper-left and lower-right cells in Fig 1B are half black and half white). Across all possible out-
comes the black and white areas are equal, indicating that overall the probabilities T < A and T
> A are each 0.5.

Although T is equally likely to lie to the left or right of A, it is not equally likely to lie in posi-
tions that are greater or less than 1 on the attention axis (Fig 1C). The symmetry of T relative
to 1 on the attention axis holds when B is in x and is therefore always less than A (Fig 1C, top
row). In this case, the possible outcomes and probabilities on the attention axis are identical to
those in Fig 1B; there is equal probability of T taking a value greater than or less than 1 on the
attention axis, as indicated by the equal blue and orange areas in the top row of Fig 1C.

The bias occurs when A and B both lie in range y, where B can be greater than A. Such inver-
sions reverse the polarity of the attention axis, such that sample values toward the left map to
more positive attention axis positions than those toward the right. Axis inversions occur when-
ever B lies to the right of A. Inversions account for the outcomes labeled ABT where the blue
color in the upper row of Fig 1C (T > 144) is replaced by orange in the lower row (T < 144).
When A and B are both in y and T'is in z (more positive than both A and B), T will have a posi-
tion on the attention axis that is greater than 1 when A < B, but equally often it will have a
position on the attention axis that is less than 1, when B < A (third cell in bottom row of Fig
1C). Additionally, there are six equally probable arrangements when A, B, and T are all in
range y (leftmost cell in bottom row of Fig 1C). But only two of these six arrangements result
in situations where T > 1 on the attention axis. Under these conditions, the overall probability
that T will have a value less than 1 on the attention axis in Fig 1C is 0.583 (0.5 plus the bias
caused by outcomes ABT, 1/16 + 1/48). The ability of the orientation of the attention axis to
flip in certain configurations means that there will be a bias for T to have a value shifted from 1
toward the direction of 0, even though T was drawn from the same distribution as A.

This bias in the attention axis stems from the overlap between distributions used to con-
struct it and noisy estimates of the distribution means. If the estimates A, B and T were each
based on a large number of samples, or individual responses from a large number of neurons,
they would approximate the true means of the distributions, B would virtually never lie to the
right of A, and the bias would be effectively eliminated. The amount of bias in the example in
Fig 1 can be precisely calculated because the distributions have well-defined properties. To vali-
date the probabilities in Fig 1C, we simulated the sampling scenario 10,000 times. The mean
probability that T'< 1 was 0.583 (SE 0.002) when A and T were randomly drawn from random
uniform distributions (Fig 1C), while the mean probability that T < A was 0.50 (SE 0.002, Fig
1B), matching theoretical expectations. Thus, we can account for biased sampling on the atten-
tion axis when the statistics of the distributions are known, and potentially correct for it.

In practice, however, the attention axis is built on responses from many neurons that have
distributions that can only be estimated. It is therefore difficult to know how much bias might
enter into attention axis measurements. If the distributions of firing rates of the two response
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distributions that comprise the attention axis are non-overlapping, then axis inversion is
avoided. But because neurons are typically weakly modulated by attention and are often driven
by suboptimal sensory stimuli in neurophysiological experiments, overlapping population
responses are COmmon.

Although the bias described in Fig 1 does not occur if samples are drawn from two non-
overlapping distributions, a second bias can occur even when the sample distributions do not
overlap and is related to the process of projecting points in multidimensional space. This bias
acts in the same direction as that described above, shifting measurements towards 0 on the
attention axis. Fig 2 illustrates this other source of bias using a simplified example in which the
population responses are based on responses from only two neurons. All responses are noise-
less except the response of neuron 2 in the attend-right condition, which is drawn from a uni-
form distribution (Fig 2, "attend right").

As with the simulations in Fig 1, the attention axis is constructed using only a single sample
of the neurons' responses from the attend-right response distribution, A, and a single sample of
the neurons' responses from the attend-left response distribution, B (which is noiseless in this
example). A single test sample, T, is drawn from the attend-right distribution and projected
onto the attention axis. When neuron 2's response to A is greater than its mean value and its
response to T 'is less than its response to A, then the projected position of T' (black arrow) will
be less than 1 on the attention axis (orange line segment). Alternatively, if T > A in that situa-
tion, then the projection is greater than 1 (blue vertical segment). As indicated by the greater
length of the orange segment, test values are more likely to project to positions less than 1 on
the attention axis. This bias favoring values less than 1 will occur whether the slope of the atten-
tion axis is positive or negative because the longer segment will project to attention axis values
that are less than 1 in either case (the orange segment would be above the blue segment when
the slope is negative). Thus, noisy estimates of the population means can artificially bias atten-
tion axis positions towards zero, even in non-overlapping distributions.

We simulated the scenario in Fig 2 with neuron 1’s responses fixed one unit apart (abscissa)
and neuron 2’s attend-right response drawn from a uniform distribution one unit in extent
(blue and orange vertical bars combined). The magnitude of the bias depended on the modula-
tion by attention relative to the magnitude of the response noise. In the configuration illus-
trated in Fig 2, the mean position of sample T on the attention axis was 0.856 (SE 0.001), a bias
towards 0. Doubling the extent of the uniform distribution increased the bias so that the mean
position of T was 0.571 (SE 0.002). In contrast, doubling the difference between neuron 1’s
responses (i.e., by moving B leftward in Fig 2) reduced the original bias such that the mean axis
position was 0.96. The bias towards zero therefore increases as either 1) population responses
become more variable, or 2) attentional modulation decreases.

The original attention axis was constructed using correct responses (“Hits”) from the epoch
immediately before the stimulus change (“n-1”) in each trial. Because only Hits were used to
construct the axis, the mean of Hit trials for the attend-right condition was forced to lie at 1,
and that for the attend-left conditions was forced to lie at -1. Because the axis was constructed
with a finite number of attend-left and attend-right Hit trial responses that had overlapping
distributions [5], other responses projected onto the axis were susceptible to the biases
described above (Figs 1 and 2). When the n-1 attend-left and attend-right Miss trials were pro-
jected onto the axis, these biases would shift their means toward 0 by some amount.

Without precise knowledge of the response distributions, it is impossible to eliminate these
biases. However, the effect of the biases can be eliminated by ensuring that it acts equally on
the responses being compared, for example, by constructing the attention axis using the
responses to one particular stimulus on Hit trials, and then comparing the responses on Hit
and Miss trials to a different stimulus. We did this by constructing the axis using responses to
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the stimulus that came two before the stimulus change on each trial (stimulus "n-2"). Hit and
Miss responses to stimulus n-1 were then projected onto the axis to yield the attention axis
position. Although n-1 responses projected onto the n-2 attention axis will have the biases
described above, these biases will affect Hit and Miss trials equally, making it possible to accu-
rately compare estimates of attention on trials with different behavioral outcomes.

The revised attention axis does not introduce artifactual differences between estimates for
Hits and Misses because any bias in attention axis measurements acts on both equally. This
fact is confirmed in the simulations shown in Fig 3. We fixed the mean of responses on Miss
trials at 1/8 of the distance between mean attend-left and mean attend-right Hit responses,
and then varied attentional modulation. The expected difference between attend-right Hit and
Miss projections was therefore always 0.25. We simulated the n-1 and n-2 responses of 20 neu-
rons over 1000 trials. Responses were modeled as normal distributions and we varied the dis-
tance between mean attend-left and attend-right Hits (d' values: 0-0.4) to study the effect of
attentional modulation on attention axis position. We measured the average difference
between attend-right Hit and Miss positions on the original (Fig 3A) and revised (Fig 3B and
3C) attention axes after 1,000-1,000,000 repetitions at each d' value.

Under these conditions, the original attention axis performs well when the distributions of
attend-left and attend-right responses of individual neurons differ by more than a d' of about
0.2. At smaller differences the mean Hit responses remain at 1 (by construction), but the biases
described above cause the mean Miss responses to take values that are increasingly biased
toward 0 as modulation by attention approaches 0.

For the revised attention axis (Fig 3B), the average attend-right Hit and Miss positions are
asymptotically close to the correct positions of 1.00 and 0.75 when d' values are 0.2 and greater
(Fig 3B, bottom). However at smaller d' values, Hit and Miss values both approach 0 as d'
approaches 0 (Fig 3B, top). This inevitably leads to an underestimate of their difference, partic-
ularly when modulation by attention is small relative to the response noise. Thus, the revised
attention axis leads to conservative measures of Hit-Miss differences when those differences in
activity are very small (Fig 3B, bottom).

Because the bias makes absolute measures on the attention axis uninformative, it can be
helpful to re-normalize the mean attend-right Hits to 1 (and attend-left Hits to -1) so that the
bias underlying both Hits and Misses is effectively removed. This approach produces a more
convenient measure of population responses for d-primes > 0.05 (Fig 3C) that is still compara-
ble to the original attention axis (Fig 3A), which tended to overestimate the true strength of
modulation by attention. While helpful, this renormalization cannot address the unreliability
of measures when attention-related modulation is small relative to uncertainty in estimates of
individual neuronal population responses.

To illustrate the effectiveness of the refined attention axis using real data, we re-examined
three key analyses that were previously presented using the original attention axis [5, 6]. Side-
by-side comparisons of the original and revised attention axes are shown below (Figs 4-6).

If the attention axis is a useful measure of the animal’s attentional state, then position on the
attention axis should correlate with behavioral performance. Alternatively, if axis position and
task performance are largely unrelated, then the attention axis fails to capture neuronal activity
that supports visual attention in our task. Fig 4 illustrates changes in behavioral performance
as a function of projected position on the attention axis. Each trial was assigned to a bin by pro-
jecting onto the attention axis the neuronal population response to the stimulus immediately
before the change appeared. The probability of successfully detecting the change was then com-
puted for each bin. Animals performed well when population responses on the original atten-
tion axis (Fig 4, left) were at the mean hit response positions and beyond (less than -1 and
greater than 1 for attend-left and attend-right conditions, respectively). Performance decreased
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as position on the attention axis approached and moved beyond zero. These results suggest
that the position on the original attention axis can be used to predict the animal’s state of atten-
tion. But given the biases in the original attention axis, it is unclear how much of the result can
be attributed to true changes in neuronal population responses. The bias would cause Miss tri-
als, but not Hit trials, to be assigned to positions on the attention axis that are shifted toward 0,
making the proportion correct (Hit trials / Hit trials + Miss trials) smaller for attention axis
positions further from 1 or -1.

To compare the same data on the original and revised attention axes, we combined data
across attend-right and attend-left conditions by normalizing the mean of the Hit distributions
in each attention condition to 1 (Fig 4, right). The relationship between attention axis position
and performance is weaker when using the revised attention axis compared to the original
attention axis, as indicated by the decrease in slope. This suggests that bias contributed some
fraction of the effects previously reported. However, a clear relationship exists on both axes:
task performance was high at positions greater than 1 (which we hypothesize correspond to tri-
als in which the animal correctly allocated attention to the stimulus where the orientation
change occurred), and performance steadily decreased as positions approached zero and
beyond. The systematic change in behavioral performance as a function of position on the
revised attention axis demonstrates that the refined attention axis captures substantial task-
relevant changes in attentional state.

Given that position on the attention axis was a reliable predictor of trial-by-trial behavioral
performance [5], we also previously examined whether attention improved performance by
decreasing the threshold or slope of psychometric functions [6]. The influence of changes in
population activity on these two behavioral parameters might help us better understand the
neuronal mechanisms that allow for improved performance associated with attention. Using
the original attention axis, we found that both the threshold and the slope of psychometric
functions decreased as the strength of attention increased (Fig 5A). We reanalyzed the data
using the revised attention axis and found that these findings hold true (Fig 5B), although both
changes were reduced.

Changes in population activity, as measured by the attention axis, can help elucidate not
only how neuronal responses support behavior but also how activity is organized within the
cerebral cortex. To this end, the attention axis was used to investigate the role of neuronal cor-
relations between cerebral hemispheres during attention. One electrode array was implanted in
each hemisphere in visual area V4, and for this analysis [6] a separate attention axis was con-
structed using neuronal responses from each of the two arrays. Trial-by-trial correlations in
attention axis projections for the two cerebral hemispheres—using either the original or refined
(Fig 6) attention axes—did not significantly deviate from zero between hemispheres (open
bars, Fig 6). We also compared within-hemisphere correlations by randomly assigning the neu-
rons recorded from each array into two groups and constructing an attention axis for each
group. Unlike between-hemisphere changes, changes in position on the within-hemisphere
attention axis were strongly correlated regardless of the behavioral outcome (filled bars, Fig 6).
Between-hemisphere correlations were not detected when measured using either the original
or revised attention axes, suggesting independent processing mechanisms for visual attention
in each hemisphere [5].

Discussion

We previously developed a novel method for measuring trial-by-trial changes in attentional
state using activity recorded from small populations of neurons in animals performing a
change detection task [5]. Conventional single-electrode neuronal measures of visual attention
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rely on activity averaged over many trials to obtain a reliable estimate of attentional state. The
attention axis uses the responses of many neurons to obtain an estimate of attention on each
trial. The ability to estimate attention at each moment makes it possible to study the dynamics
and behavioral consequences of attention within brief periods.

However, we found that the original attention axis [5, 7] is susceptible to specific artifacts
that can obscure results or suggest differences when none exist. At least two factors can bias the
attention axis as it was originally defined. First, overlapping population responses between the
two attention conditions can result in inversion of the attention axis polarity and, subsequently,
sampling biased towards zero on missed trials (Fig 1). Second, a different bias on the attention
axis occurs for multidimensional data and even for nonoverlapping distributions (Fig 2). In
principle, these biases could be quantified and corrected if the properties of the relevant distri-
butions are known, as in our reduced example in Fig 1. But such a correction is impossible for
experimental data given the nature of neuronal responses.

These two biases can be avoided if the attention axis is constructed using responses that are
independent from those that are analyzed. In our experiment, using Hit responses to stimuli
presented two stimuli before the stimulus change (“n-2”) instead of the responses immediately
preceding the stimulus change (“n-1”) achieved this goal. Responses to the n-1 stimulus on Hit
and Miss trials can then be projected on the n-2 axis. Any biases act equally on all responses
from n-2 trials, allowing uncompromised measures of differences in neuronal activity as a
function of attentional state (Fig 3). Simulations suggest that this approach is reliable and unbi-
ased until the difference between mean responses in the two conditions becomes very small
compared to the noisiness of the population response (d' < 0.1).

Re-analysis of our previous work [5, 6] shows that our main conclusions remain valid (Figs
4-6). Position on the revised attention axis continues to show a strong correlation with behav-
ioral performance (Fig 4). Neuronal modulation by attention is associated with changes in the
slope and threshold of psychometric functions (Fig 5). Finally, positions on the attention axis
constructed using responses across hemispheres remained uncorrelated even when using the
revised attention axis (Fig 6). In all cases, the magnitudes of the reported effects are reduced
using the revised attention axis. This is likely because some of the previously reported values
arose from the artifactual biases described here. This is supported by the fact that the mean
responses to attend-left and attend-right hits differed only by 8.6% in the neuronal data [5].
Such a difference would have resulted in a d' between the conditions that was only slightly
greater than 0.2, a value where bias in the original attention axis would be expected to have
some effect (Fig 3A). Nevertheless, the results with the revised attention axis could differ from
those with the original attention axis even if the original measures were in fact unaffected by
bias. Because the revised axis examines responses to one stimulus (n-1) using an attention axis
constructed from responses to a different stimulus (n-2) and then relates the outcome to detec-
tion of a change in still another stimulus, it might be noisier than the original attention axis,
which made use of neuronal and behavioral responses involving only two stimuli. A noisier
measure would reduce the magnitudes of the reported effects in the way described here. Thus,
we cannot be sure whether the original attention axis yielded larger effects because it included
bias, or because it was a less noisy measure. Whatever the case, only the results from the revised
attention axis can be considered reliable.

For decades, measures of population activity have played an important role in understand-
ing limb movements and motor planning [8-10]. Multi-electrode recordings increase the
amount of activity that can be monitored during a short interval and facilitate the analysis of
the dynamics of the neural control of movement. The increasing use of multi-electrode record-
ings in visual cortex and associated regions will further test existing tools for interpreting popu-
lation responses. The attention axis, as extended here, is one tool for monitoring visual
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attention or other arbitrary cognitive states. We hope that this approach and others like it
[4, 11] will help reveal new perspectives on the interaction of individual neurons and behavior
at relevant timescales.
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