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Abstract
Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action
potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it
has been recognized that threshold crossing events of the voltage waveform also convey rich
information. To date, the threshold for detecting threshold crossings has been selected to
preserve single-neuron isolation. However, the optimal threshold for single-neuron identification
is not necessarily the optimal threshold for information extraction. Here we introduce a
procedure to determine the best threshold for extracting information from extracellular
recordings. We apply this procedure in two distinct contexts: the encoding of kinematic
parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters
from neural activity in primary visual cortex (V1). Approach. We record extracellularly from
multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the
voltage detection threshold and quantify the information conveyed by the corresponding
threshold crossings. Main Results. The optimal threshold depends on the desired information. In
M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal
thresholds are lower than are typically used in BCI applications. In V1, information about the
orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast.
A conceptual model explains these results as a consequence of cortical topography. Significance.
How neural signals are processed impacts the information that can be extracted from them. Both
the type and quality of information contained in threshold crossings depend on the threshold
setting. There is more information available in these signals than is typically extracted. Adjusting
the detection threshold to the parameter of interest in a BCI context should improve our ability to
decode motor intent, and thus enhance BCI control. Further, by sweeping the detection
threshold, one can gain insights into the topographic organization of the nearby neural tissue.
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Introduction

Brain–computer interfaces (BCIs) extract information about
motor intentions from recordings of neural signals to control
an external device, with the goal of assisting patients with
paralysis or other sensory–motor deficits. The recorded sig-
nals have taken the form of EEG, MEG, and intracortical
signals (Schwartz et al 2006). A promising class of BCIs
extracts information directly from action potentials, or
ʻspikesʼ, identified from the voltage traces recorded from
chronically implanted extracellular electrodes. To identify
these spikes, the voltage trace is typically band-pass filtered,
thresholded to identify transients in the voltage signal, and
then sorted based on the shape of the transient waveform into
clusters corresponding to individual neurons. This final pre-
processing step, ʻspike sortingʼ, has received considerable
attention because it is time consuming, prone to inaccuracies,
and difficult to perform in clinical settings (Lewicki 1998,
Rey et al 2015). Fortunately, it appears that accurate spike
sorting may not be necessary for good BCI performance
(Ventura 2008, Fraser et al 2009, Chestek et al 2011, Malik
et al 2014). Rather, a threshold can be set, and all voltage
transients that exceed that threshold (that is, ʻthreshold
crossingsʼ) can be counted, regardless of the waveform shape.
Evidence is accumulating that there is information in such
non-spike signals recorded from microelectrodes. In one
example, Stark and Abeles (2007) used a multiunit activity
signal, processed by computing the root mean square of the
voltage signal in the 300–6000 Hz frequency band, to predict
reach direction and grasp with better accuracy than either
spike activity or local field potentials. With this knowledge,
some researchers have investigated the possibility of moving
away from using sorted units as inputs to BCI decoders and
instead using threshold crossings (Fraser et al 2009). Many
studies agree that BCI performance is substantially degraded
when the non-spike parts of the signal are discarded
(Kloosterman et al 2014, Todorova et al 2014, Deng
et al 2015), raising the intriguing possibility that the threshold
could be adjusted to maximize BCI performance.

Here we assess how the voltage detection threshold set-
ting (ʻthresholdʼ) affects the encoding of movement para-
meters in primary motor cortex (M1). We then assess the
generality of this approach by using it to examine the infor-
mation present in recordings from primary visual cortex (V1).
To interpret our observations, we reason that the choice of
threshold impacts the effective sampling radius of the elec-
trode. For example, choosing a more permissive threshold
presumably enlarges the effective sampling radius of the
electrode and, thus increases the number of neurons con-
tributing to the threshold crossing signal (Martinez et al 2009,
Pedreira et al 2012). At high detection thresholds, threshold
crossings comprise the spikes from individual neurons close
to the electrode. At low detection thresholds, threshold
crossings comprise multi-unit activity from smaller neurons
or neurons farther from the electrode. How the detection
threshold is chosen impacts the neural contributions to the
signal, and potentially, what information is contained in the
signal.

Traditionally, thresholds have been chosen to maximize
spike-sorting performance. However, the optimal threshold
for single-neuron identification is not necessarily the optimal
threshold for information extraction. We hypothesized that
the optimal threshold would depend on the parameter of
interest. We assessed the impact of the detection threshold by
systematically sweeping the detection threshold and evaluat-
ing the information content of threshold crossings about two
different parameters of interest, velocity and speed, recorded
from primary motor cortex (M1). We find that the type of
information encoded by threshold crossings depends strongly
on threshold, and the optimal threshold depends on the
parameter of interest. In particular, we find that velocity, a
directional parameter, is better represented at higher thresh-
olds, whereas speed, a scalar quantity, is better represented at
lower thresholds. Additionally, we show that optimal
thresholds are surprisingly low, considerably below the
thresholds commonly used in closed-loop BCI studies. This
means that the optimal thresholds for extracting information
are not typically the best thresholds for isolating single
neurons.

We can understand these results in the context of the
topographical representation of speed and velocity in M1. The
scale of the topographic organization and the homogeneity of
a parameter’s representation across cortical tissue influence
the optimal threshold. This observation could generalize to
other areas of cortex, such that knowledge of the topographic
representation of different parameters should predict the
choice of threshold for maximizing the information available
in neural recordings. We tested this hypothesis with record-
ings from V1, a cortical area with a distinctly different
topographical representation of its relevant parameters. By
applying our method of sweeping the threshold, we were able
to predict the relative optimal thresholds for the parameters
orientation and contrast of a visual stimulus. We conclude
that the type and quality of information that can be extracted
from extracellular signals depends on the threshold setting;
there is more information present in extracellular voltage
recordings than is typically extracted.

Methods

All animal procedures complied with the National Institutes
of Health Guide for Care and Use of Laboratory Animals, and
were approved by the University of Pittsburgh’s Animal Care
and Use Committee. To assess the generality of our predic-
tions, we analyzed data collected from two different cortical
areas in two monkeys each, and in the context of two different
behaviors.

M1 task and recordings

Two male monkeys (Macaca mulatta, 11.6 and 7.3 kg) were
trained to perform an 8-target center-out reach task
(figure 1(a)). The position of an LED marker attached to the
fingertip of the reaching hand was tracked at 120 Hz (<1 mm
resolution; Phasespace Inc., San Leandro, CA). The position
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of the marker was visible to the monkey as a cursor on a
frontoparallel screen. The hand was not visible to the monkey,
because it moved in the space behind the screen. At the start
of each trial, the monkey had to move the cursor to a central
target and hold for 200–400 ms. Then, one of eight peripheral
targets (arranged at 45° intervals and spaced 9 cm from the
center) appeared, and he had ∼800 ms to acquire it with the
cursor. After holding the cursor on the peripheral target for
200–500 ms (randomized) he received a liquid reward. A
failure at any point caused the trial to terminate without

reward, and there was a 1.5 s timeout before the next trial
began.

When the monkey was proficient at the task, we
implanted a 96-electrode array (Blackrock Microsystems) in
the arm area of M1 (as determined intraoperatively via cor-
tical landmarks) contralateral to the reaching hand
(figure 1(a)). As the monkey performed the task we recorded
neural data from M1 using a Tucker-Davis Technologies RZ2
system. During each recording session, we streamed the fil-
tered broadband signal (700–3000 Hz band-pass, Kaiser

Figure 1. Schematic of tasks and neural recordings. (a) During the M1 recordings, a monkey performed an 8-target center-out reaching task.
An LED marker (red) was attached to the monkey’s finger tip to track his movements, which were displayed as a cursor on the screen (blue).
The monkey made reaches from the center of the screen to one (green) of eight peripheral targets (gray). The array placement in M1 is shown
by the green square. (b) During the V1 recordings, a monkey fixated on a central spot (white) while drifting Gabor patches were presented
peripherally. The array placement in V1 is shown by the blue square. (c) Voltage trace from M1 during a single reach trial with detection
threshold settings from θ=10σ to −10σ. θ=1σ (orange) is permissive, capturing low voltage transients. θ=5σ (light blue) is more
restrictive, capturing only high voltage transients which likely correspond to spikes from a single neuron. (d) Waveform snippets for
threshold crossings of 1σ, 3σ, and 5σ in C. As the threshold becomes more permissive (1σ, orange) there are more threshold crossings. As the
threshold becomes more selective (5σ, light blue) the waveform becomes more consistent. (e) Using the exclusive window categorization
method, threshold crossings for the channel are identified when the voltage trace passes into and out of the window defined by a particular
threshold without passing into higher-threshold windows. A 1σ window (orange) and a 3σ window (yellow) are shown in this example. If
the voltage trace crosses the 1σ threshold but not the 3σ threshold, it is classified as a 1σ crossing. As indicated with the black circles, we can
successfully select the larger voltage fluctuations with the exclusive θ=3σ and we capture the smaller fluctuations with the
exclusive θ=1σ.
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window) from 4 to 10 different channels directly to disk at a
24 kHz sampling rate. In some cases we streamed an unfil-
tered broadband signal at a 24 kHz sampling rate and applied
a 700–3000 Hz bandpass filter offline. Because of system
limitations, we could not record broadband signals from all 96
channels each day. In total, we recorded 20 unique channels
over 5 experimental sessions from monkey J (26 months post-
implant) and 53 unique channels over 9 experimental sessions
from monkey L (2 weeks to 9 months post-implant).

In this data set, we analyzed the representation of two
kinematic parameters—velocity and speed—which are
known to correlate well with neural firing in M1 (Moran and
Schwartz 1999, Churchland and Shenoy 2007, Golub
et al 2014).

V1 stimuli and recordings

Two different male monkeys (Macaca mulatta, 9.25 and
8.0 kg) were trained to fixate on a central spot while visual
stimuli were presented peripherally (figure 1(b)). The animals
had been trained to perform an orientation change detection
task over the course of several months and were able to stably
maintain fixation for 3–5 s. Before electrophysiological
recording, the animals were implanted with a custom titanium
head post, and a 96-electrode array (Blackrock Microsystems)
in V1 (as determined by cortical landmarks, figure 1(b)). Eye
position was monitored using an infrared optical recording
system (Eyelink, SR Research) sampling at 1 kHz.

To begin each trial, the monkey would acquire fixation
on a central spot. After 200–400 ms of stable fixation within a
1 degree window, stimulus presentation began. A total of
seven stimuli were flashed for 200 ms each with an inter-
stimulus interval of 100 ms. If the animal maintained fixation
for the duration of the stimulus presentations, he was rewar-
ded with a drop of juice. If the animal’s eye position left the
fixation window during stimulus presentation, the trial was
aborted and no reward was given. Stimuli were presented on a
mean gray luminance screen (1024×768; 27.9 pixels/
degree; 120 Hz refresh rate) placed 635 mm in front of the
animal. The stimuli were drifting oriented Gabor patches that
varied in contrast (contrast values=0.06, 0.12, 0.25, 0.5, 1)
or orientation (orientation values ranged from 0° to 330° in
30° intervals). When orientation was varied, contrast=1.
When contrast was varied, orientation=90° for monkey B
and 180° for monkey G. The receptive fields of the V1
neurons recorded on the array were located approximately
3.5° eccentric from fixation, in the lower right visual field,
and they spanned approximately 2° of visual angle. Spatial
dimensions of the stimuli were selected to envelop the
receptive fields of all V1 neurons recorded by the array. In the
initial frame of each stimulus, the grating had odd spatial
symmetry. The phase velocity of the stimulus was selected so
that upon presentation of the final frame, the stimulus had
drifted one complete cycle.

Electrophysiological recordings were performed 2.5
months (monkey B) and 2 weeks (monkey G) post-implant.
Data were collected with a Grapevine system (Ripple, Inc.).
Broadband signals were recorded on all 96 channels on one

day. Each channel was sampled at 30 kHz and raw signals
were bandpass filtered (highpass filter: 0.3 Hz; lowpass filter:
7.5 kHz, 3rd order Butterworth) and streamed to disk. The
saved signals were subsequently filtered offline in the same
way that the M1 signals were, using a Kaiser window with a
700–3000 Hz passband.

In this task, we analyzed the neural representation of the
orientation and contrast of the drifting Gabor patch stimulus.
Both of these parameters are known to drive neural firing in
V1 (Hubel and Wiesel 1959).

Threshold crossings

Our central analysis assesses the information content present
in neural recordings at varying voltage thresholds. To do this,
we systematically swept the level of the voltage detection
threshold to extract threshold crossings (figure 1(c)). At each
threshold we evaluated the signal-to-noise ratio (SNR) of the
information about movement or stimulus parameters encoded
by the corresponding threshold crossings. We defined
threshold settings with respect to the standard deviation of the
filtered signal (σ), computed as the average standard deviation
of the recording over 100–200 trials. We considered threshold
settings ranging from 0 (mean) to −10σ for the M1 data and
−6σ for the V1 data, at intervals of 0.5σ. These negative
threshold settings correspond with the depolarizing phase of
the action potential. Results from positive-going thresholds
were comparable, and thus we use only the negative thresh-
olds in our analyses. We defined a threshold crossing as the
time at which the recorded signal crossed the threshold
voltage in a negative-going direction, with 100 μs resolution.
For clarity, figures and the following text will refer to the
absolute value of the multiplier of the threshold setting
(e.g. 3σ).

Quantifying information content with SNR

We use signal-to-noise ratio (SNR) to quantify the informa-
tion content conveyed by the threshold crossings. Intuitively,
SNR can be thought of as the ratio of useful information to
irrelevant information. Formally, ʻsignalʼ is defined as the
variance in the data that is explained by a parameter of
interest (e.g. velocity, speed, orientation or contrast), and
ʻnoiseʼ is defined as the residual, unexplained variance after
accounting for that parameter. Here, our recorded data, Yθ, is
the number of threshold crossings recorded at a particular
threshold θ. We can decompose the variance in our data, Var
[Yθ], into a component explained by a stimulus X and a
component remaining after accounting for X. This decom-
position is exact, and is given by the Law of Total Variance:

[ ] ( [ ∣ ]) ( [ ∣ ]) ( )= +q q qY E Y X E Y XVar Var Var , 1

where ( [ ∣ ])qE Y XVar is the variance of the expected value of
Yθ conditioned on X, and ( [ ∣ ])qE Y XVar is the expected value
of the variance of Yθ conditioned on X. The first term
quantifies the variation in Yθ that is explained by X (i.e., the
signal variance); the second quantifies the residual variation
in Yθ that remains after accounting for X (i.e., the noise
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variance). The SNR is the ratio of these two quantities:

( [ ∣ ])
[ ( ∣ )]

( )ºq
q

q

E Y X

E Y X
SNR

Var

Var
. 2

For the M1 studies, the parameters of interest are velocity
and speed, which both vary in a continuous fashion over the
range of natural reaching movements. To compute the SNR in
this case, we first fit linear tuning curves by regressing neural
activity against kinematics, and then quantified how well
these linear fits accounted for the variance of the threshold
crossings with the SNR. We considered a separate encoding
model for velocity (equation (3)) and speed (equation (4)),
and fit an ordinary linear regression at each threshold setting:

( ) ( ) ( ) ( ) ( )e= + + +qy t b b v t b v t t , 3x x y y v0

( ) ( ) ( ) ( )e= + +qy t b b s t t , 4s s0

where yθ(t) is the number of threshold crossings for a given
threshold in a 100 ms bin centered at time t, vx(t) and vy(t) are
the x- and y-components of the velocity of the cursor averaged
over a 100 ms bin, s(t) is the speed of the cursor averaged
over a 100 ms bin, and ε(t) is an error term that captures
deviations from the model. These models can be fit at varying
temporal offsets between the neural and kinematic data. We
used a 100 ms offset (neural activity leading kinematics)
because we have found this offset yields the best correlation
with behavior for the data sets analyzed here (Perel
et al 2015). For each encoding model, we used the model
estimates to compute the signal variance and the residuals of
the regression to compute the noise variance. As an example,
for speed the signal variance is the variance of b0+bss(t)
over all recorded speeds, and the noise variance is the
variance of εs(t). Graphical depictions of these quantities are
provided in figure 2(c).

For the V1 studies, the parameters of interest are orien-
tation and contrast. Each of these varied over discrete levels in
our experiments, and firing rates were measured for multiple
repetitions of each particular orientation or contrast. In this
case [ ∣ ]qE Y X and [ ∣ ]qY XVar can be measured directly from the
data (as depicted in figure 8(a)), without the need for linear
regression.

Although SNR is not a common metric in either M1 or
V1 studies, it provides a simple, intuitive metric of informa-
tion content, it is relatively straightforward to compute, and it
allows for relatively direct comparisons across brain areas
even when the parameters of interest are quite different. A
more common metric of goodness of fit in motor neurophy-
siology is the coefficient of determination (R2) (e.g., Geor-
gopoulos et al 1982), which is a statistical measure of how
well a model approximates the data. Qualitatively our M1
results are the same with either measure. However, since
neurons in V1 do not respond in a linear fashion to stimuli of
different orientations, the R2 would have been less appropriate
for those data. Another possibility would have been to com-
pute the mutual information between threshold crossings and
parameters directly. However, comparisons of mutual infor-
mation across different stimulus sets are difficult to interpret
when those sets are not entropy-matched (Chase and

Young 2008, Golub et al 2014). For these reasons, we favor
the SNR metric for this study. Finally, we note that SNR
values less than one are not uncommon in neural responses,
especially when analyzed at fine temporal resolution, and low
SNR values still signal the presence of meaningful
information.

Exclusive windows approach to spike sorting

We reasoned that the small-amplitude fluctuations of the
voltage trace might contain information that was distinct from
the information contained in the high-amplitude fluctuations.
To this end, we performed an ʻexclusive windowʼ analysis. In
this analysis, a threshold crossing was registered only if it
crossed a defined threshold in the negative direction and re-
crossed it in the positive direction before crossing another
more-negative threshold (figure 1(e)). With this definition, a
given excursion of the voltage trace is exclusively categorized
as crossing only one threshold. This is in contrast to our basic
threshold analysis in which a threshold crossing that crossed a
given threshold was counted at all smaller thresholds as well.
To differentiate these choices in the text, we refer to exclusive
threshold crossings as xTCs. The exclusive windows can act
as a crude approach to spike sorting (Todorova et al 2014),
when large thresholds are selected. Here we examine two
exclusive thresholds: a low threshold at 1σ to select the small
voltage fluctuations, and a high threshold, which captures the
large voltage fluctuations associated with spikes. We con-
sidered two possible high thresholds, 3σ or 4.5σ. Using these
xTCs, we repeated the SNR analysis as described above.

Results

Our central finding is that in extracellular recordings the
detection threshold can be tuned to maximize information about
parameters of interest, with different parameters exhibiting
different optimal thresholds. Further, the threshold setting that
maximizes information is usually not the setting that yields the
best spike sorting. We show this in two cortical areas, with two
parameters of interest for each area. Our main focus is on pri-
mary motor cortex (M1), where we consider the selection of
optimal thresholds for the neural encoding of velocity or speed.
To examine the generality of this approach, we also apply it to
neural recordings from primary visual cortex (V1), where the
parameters of interest are orientation and contrast. In both cases,
recordings are collected with 96-electrode arrays. Broadband
data are saved, and analyses are conducted offline. For each
recorded channel, we swept the voltage detection threshold, and
measured the number of threshold crossings at each threshold.
At each threshold, we quantified the amount of information
about the parameter of interest as a SNR.

Information content depends on threshold

Figure 2(a) shows the density of threshold crossings at a low
threshold (θ=1σ) and a high threshold (θ=5σ) during
reaches to eight different target directions for an example M1
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Figure 2. SNR quantifies information content in M1. (a) Single channel example of threshold crossing activity as a function of reach. Each
plot shows the number of threshold crossings in 100 ms bins for one of eight reach directions. The color indicates the number of threshold
crossings, where the red scale is for θ=1σ and the blue scale is for θ=5σ. Each row is a trial. The top plots are for a permissive threshold
(θ=1σ) and the bottom plots are for a selective threshold (θ=5σ). Average speed profiles for each reach direction are plotted in gray for
reference. Note the strong directional tuning for θ=5σ (with an upwards preferred direction), and the strong speed modulation for θ=1σ.
Panels (b)–(f) step through the SNR calculation which we use to quantify this. (b) The observed number of threshold crossings (gray) is
plotted against the corresponding reach speed for a permissive (left) and selective (right) threshold. In black, we show the linear regression.
(c) We take the variance of Yθ (as described in equation (4), black in (b)) to be the signal and the variance of the residuals (εs as described in
equation (4)) to be the noise. The histograms show the distributions of these measurements from which the variance is calculated. The signal
(d) and noise (e) arising from these variance calculations vary with threshold. (f) Combining signal and noise, velocity and speed SNRs show
an inverted-U shaped relationship with threshold with peaks at different thresholds. (g) A common metric of tuning in M1 is R2, plotted here
for comparison.
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channel. It can be seen that different information is mani-
fested in the tuning at different threshold settings. At θ=5σ
(cool color scale), this channel shows velocity tuning, with a
preferred direction (PD) up and to the right. At θ=1σ (warm
color scale), this channel modulates similarly for all eight
reach directions. The velocity tuning is weak at this threshold,
but, instead, the signal reflects speed (gray lines): it is active
during the reach regardless of direction. This is an exemplary
channel which visually highlights our central finding: by
adjusting the threshold setting, we differentially extract
information about each parameter (not just different amounts
of information about a given parameter) from the neural
signal. Separately for each threshold setting, we modeled the
relationship between threshold crossings and each kinematic
parameter with linear regression. We quantified the informa-
tion content with the SNR. As an example, figure 2(b) shows
the linear regressions for speed at θ=1σ and θ=5σ. As
defined in Methods, the signal is the variance of the estimated
threshold crossings and the noise is the variance of the resi-
duals, as shown by the histograms in figure 2(c). We calcu-
lated the signal and noise for each threshold setting from 0 to
10σ in 0.5σ increments (figures 2(d) and (e)). Importantly, the
SNR depends on the threshold setting (figure 2(f)). Specifi-
cally, this channel has more speed information at low
thresholds and more velocity information at high thresholds.
Perhaps a more familiar metric of goodness of fit in motor
neurophysiology is the coefficient of determination (R2) (e.g.,
Georgopoulos et al 1982). Figure 2(g) plots the dependence
of R2 on threshold. Qualitatively, we see the same dependence
of information content on threshold regardless of which
measure of goodness of fit we choose. This reassures us that
quantification of information with SNR is an appropriate
measure for neural recordings from M1, and it has the
advantage that it can be applied more broadly to neural
recordings from other brain areas.

Figure 3 shows the SNR dependence on threshold for
three representative M1 channels. The curves for both speed
and velocity show an inverted-U shape with respect to
threshold. The lowest SNR values occur at θ=0, when there
are so many threshold crossings that the signal does not
provide clear information about the reach kinematics. Simi-
larly, we see low values of SNR at high values of θ, when
there are not enough threshold crossings to provide a clear
relationship between neural events and the velocity or speed
of the reaches. The peak SNR is between these extremes.

From the SNR dependence on threshold we can extract
the optimal threshold for velocity and speed information. We
computed SNRs for the 73 M1 channels we recorded. We
only included a channel in subsequent analyses if it exhibited
a statistically significant regression (α=0.05) for at least one
threshold setting for at least one of the kinematic parameters.
This resulted in 0 discarded channels from monkey J and 6
from monkey L, leaving a total of 20 channels from monkey J
and 47 channels from monkey L. The normalized average
SNR relationship with threshold for those 67 channels is
plotted in figure 4(a). Each channel was normalized to its
maximum SNR and then averaged. Normalization emphasizes
the relative thresholds at which the peaks occur, regardless of

differences in the absolute SNR values across channels. The
deviation of the normalized peak from a value of one reflects
the variability in the peak threshold across the population.
The peak SNR varies for speed and velocity: speed is opti-
mally encoded at a low threshold setting (θ=2σ), while
velocity is optimally encoded at higher thresholds (θ=2.5σ).
The optimal threshold depends on the information one wishes
to extract, and is often lower than the threshold that is typi-
cally applied to isolate the activity of a single neuron.

Optimal SNR thresholds are lower than typically used for
recording

In multi-electrode systems where it is possible to adjust the
threshold independently for each channel, even more

Figure 3. SNR in M1 depends on threshold. SNR dependence on
threshold for three representative M1 channels. At each threshold,
SNR is computed separately for velocity tuning (green) and for
speed tuning (black).
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information can be extracted. Figure 4(b) shows histograms
for the optimal thresholds for velocity (left) and speed
(middle). The distribution of optimal thresholds for speed is
narrow with relatively low thresholds. The distribution of
optimal thresholds for velocity is broader than is the dis-
tribution of optimal thresholds for speed and it includes
channels with higher optimal thresholds. The distributions
have statistically different means (t-test, p=10−7). The mean
pairwise difference between the optimal velocity threshold
and the optimal speed threshold is 1.28σ±0.18σ, and the
distribution is shown in the histogram in figure 4(c). The
optimal velocity threshold is higher than the optimal speed
threshold for 48 of 67 (72%) channels.

Using exclusive thresholds to highlight information content of
low amplitude fluctuations

It is conceivable that large-voltage ʻspikesʼ are the sole source
of information in an extracellularly recorded signal, and lower
thresholds are just capturing these spikes with greater

reliability. Alternatively, the lower amplitude fluctuations
which are not readily attributable to the spiking of nearby
neurons may contain information that is distinct from that
carried by the high-amplitude events. We addressed this
through an exclusive threshold analysis. We ask whether
single-unit activity and the residual multi-unit hash contribute
differently to the speed and velocity encoding models.
Figure 5 shows how setting two exclusive thresholds can act
as simple spike identifier, using the channel depicted in
figure 2 as an example. The black circles identify exclusive
threshold crossings (xTCs) for thresholds of 1σ and 3σ.
Setting the threshold high has a similar effect as spike sorting,
in that it captures single unit activity, whereas the low
threshold captures non-single unit activity that might typically
be discarded under a sorting paradigm, as evidenced by the
waveform snippets shown in figure 5(b). The SNR for the
xTCs from this example channel at θ=1σ shows that there is
speed information contained in the non-single unit activity
(figure 5(c)). The single unit activity captured by θ=3σ
shows better velocity encoding. This supports the idea that

Figure 4. Optimal thresholds for a given parameter differ across channels. (a) Normalized mean±SE of SNR dependence on threshold
for all 67 M1 channels with significant tuning. Velocity (green), speed (black). (b) Optimal thresholds for velocity (green) and speed (black).
The arrows point to the channel shown in figure 2. (c) The per-channel difference between the optimal thresholds for velocity and
speed. The mean±SE is indicated by the dot with the line through it above the histogram. The mean is significantly different from
zero (t-test, p<10−7).
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low-voltage events contain information that is distinct from
the information present in spiking activity.

The mean exclusive threshold SNR for all channels is
shown in figure 6. On average (figure 6(a), left), the non-spike
parts of the signal represented by the xTCs at θ=1σ encode
speed better than the xTCs at θ=3σ. Velocity is better
encoded at more restrictive (higher) thresholds. To highlight
the impact that the choice of threshold has on the information
content of the threshold crossings, we repeated the exclusive
threshold analysis for M1 at θ=1σ and θ=4.5σ. Such a
high threshold should isolate single units and is thought to
obtain better encoding of kinematic information. However,
we found that this threshold is quite restrictive and misses
some of the available information (figure 6(b)). The exclusive
window analysis highlights that there is information con-
tained in the low-amplitude fluctuations of the signal that is
often discarded as noise.

Information content in V1

To test the generality of our finding that the optimal threshold
depends on the parameter of interest, we examined recordings
from primary visual cortex (V1). We selected V1 for com-
parison in part because its function is markedly different from
M1, and also because the topography of V1 is well-estab-
lished. In V1, nearby neurons are tuned similarly to stimulus
orientation, with orientation tuning changing in a systematic
way across the cortical surface (Hubel 1982). However, all
V1 neurons are tuned similarly to contrast, showing increased
firing rates with increasing stimulus contrast (Albrecht and
Hamilton 1982). The topographic organization of V1 led us to
predict that the optimal threshold for contrast information
would be lower than the optimal threshold for orientation
information.

We recorded from two monkeys with multi-electrode
arrays implanted in V1 while they viewed drifting gratings,
and investigated how information about orientation and
contrast depended on threshold. The channels were tuned to
different orientations, but all channels showed a similar
response to contrast, wherein the maximal response was for
contrast=1. Figure 7 plots tuning curves for contrast and
orientation at three thresholds for an example channel. Each
point in the tuning curve is the number of threshold crossings
occurring during a single presentation of a stimulus with a
particular orientation or contrast. The mean is plotted to help
visualize the tuning.

To test our prediction that orientation and contrast show
different optimal thresholds, we calculated the SNR at each
threshold to quantify the information content of the threshold
crossings. We break down this calculation into its compo-
nents in figure 8. For orientation, signal is the variance of the
mean number of threshold crossings over each orientation
(figure 8(a), orange). Noise is the mean of the variance in
threshold crossings at each orientation (figure 8(a), black). As
shown for this example channel in figure 8(c), orientation and
contrast SNR depend on threshold, with both curves showing
an inverted-U shape. For this channel, contrast shows a peak

Figure 5. An exclusive window analysis reveals substantial
information in small voltage fluctuations. (a) Using the exclusive
window categorization method, threshold crossings for the channel
depicted in figure 2 are identified when the voltage trace passes into
and out of the window defined by a particular threshold without
passing into higher-threshold windows. A 1σ window and a 3σ
window are shown in this example. If the voltage trace crosses the
1σ threshold but not the 3σ threshold, it is classified as a 1σ crossing.
As indicated with the black circles, we can successfully select the
larger voltage fluctuations with the exclusive θ=3σ and we capture
the smaller fluctuations with the exclusive θ=1σ. (b) Waveform
snippets corresponding to the xTCs for exclusive thresholds θ=1σ
(left) and θ=3σ (right) for the channel shown in (a). (c) The SNR
for velocity and speed at exclusive thresholds θ=1σ and θ=3σ
for the channel shown in (a). Note that the speed SNR is higher at
θ=1 than θ=3 even though those waveforms look like noise.
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SNR at θ=2σ, and orientation shows a peak SNR
at θ=2.5σ.

We calculated how SNR depends on threshold for a
population of 49 channels (figure 9(a)). Only channels which
were well-tuned to orientation (SNR>0.75) were included
in this and subsequent analyses. Every channel that showed a
response to the stimulus demonstrated an SNR greater than
0.75 for contrast, and thus we chose the significant channels
conservatively, based on orientation tuning. Like the indivi-
dual channel example, there is an inverted-U shaped curve
with the peak occurring between the extremes of too many
threshold crossings and too few threshold crossings. The SNR
curves for both orientation and contrast depend on threshold
similarly, with contrast optimally represented at θ=2σ and
orientation optimally represented at θ=2.5σ on average for
the population.

The optimal threshold histograms for orientation and
contrast are plotted in figure 9(b). Both distributions of
optimal contrast thresholds and optimal orientation thresholds
are narrow with primarily low thresholds. However, the
optimal threshold for orientation is higher than the optimal
threshold for contrast for 26 of the 49 (53%) channels and the
distributions have statistically different means (t-test,
p=0.004). The mean pairwise difference between the opti-
mal orientation threshold and optimal contrast threshold is
0.35σ±0.11σ (figure 9(c)).

Discussion

We assessed the information content of extracellular record-
ings from M1 and V1 by systematically sweeping the voltage
detection threshold, counting the number of threshold cross-
ing events at that threshold setting, and evaluating how much

information those threshold crossings provided about external
parameters of interest. We found that optimal threshold
depends on the parameter of interest. Specifically, directional
parameters, like velocity and orientation, have higher optimal
thresholds than scalar parameters, like speed and contrast.
Regardless of the parameter of interest, the optimal thresholds
for information were lower than the thresholds typically used
in closed-loop BCI studies in which threshold crossings are
used in lieu of spike sorting. We can make sense of these
observations with a consideration of cortical topography.
These results have pragmatic implications for the optimal
decoding of neural signals.

Cortical topography can explain optimal thresholds

How a stimulus parameter is represented in an extracellular
voltage trace will depend in part on how the topographic scale
of tuning to that parameter in the cortex relates to the effective
sampling radius of the electrode, as determined by the
detection threshold. At high detection thresholds, threshold
crossings reflect the tuning of individual neurons. At low
detection thresholds, threshold crossings comprise multi-unit
activity and tuning likely reflects the homogeneity of the
tuning of local neurons. Modeling studies have suggested that
single unit activity arises from neurons within 50 μm of an
extracellular electrode and multi-unit activity arises within
50–140 μm of the electrode (Martinez et al 2009, Pedreira
et al 2012). Thus, it is reasonable to expect that the topo-
graphic scale at which a stimulus parameter is represented
impacts threshold crossing tuning, particularly at low
thresholds.

Figure 10 schematizes a putative explanation for the
effects of threshold selection that we observed. As the
detection threshold of an electrode is moved toward 0, its

Figure 6. Distinct information is encoded by small and large voltage fluctuations. (a) SNR as a function of exclusive threshold (mean±SE).
Different information is contained in putative spikes classified with θ=3σ and in the low voltage fluctuations at θ=1σ. (b) The exclusive
window SNR for exclusive windows of θ=1σ and θ=4.5σ (a threshold commonly chosen in BCI studies.) It is important to note that
because of the exclusive nature of the thresholds, adjusting the high threshold also impacts the xTCs at the low threshold. Thus, the SNR at
1σ changes when the high threshold is different. This is not true for the inclusive thresholds used in the other analyses. (Data are from M1,
n=67.) Significant differences are indicated with * for p<0.01 and ** for p<10−4.
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effective sampling radius increases (figure 10(a)). (Note that
while the relationship between detection threshold and
effective sampling radius is probably not linear, it is likely to
be monotonic). As the threshold is lowered, the number of
threshold crossings increases, as does the variability in the
waveform shapes. A strict threshold, like θ=5σ (blue),
yields waveforms that likely originate from a single neuron.
On the other hand, if we relax the threshold to θ=1σ
(orange), the waveforms are almost certainly not from a sin-
gle unit.

A schematic example of parameters with different topo-
graphic scales relative to the ʻlistening sphereʼ of an electrode
is shown in figure 10(b). Here the black arrows represent a

Figure 7. A single V1 channel example of how contrast and
orientation tuning change with threshold. (a) Each data point
represents the number of threshold crossings from one representative
electrode recorded during a single trial. For visualization purposes,
the data points are jittered with respect to orientation angle or
contrast, respectively. To highlight the tuning, the mean threshold
crossings to each orientation are connected and plotted using the
color scheme in figure 2 (orange=1σ, yellow=3σ, light
blue=5σ). These curves are overlaid on the same plot in (b). Note
the log scale on the TC axis.

Figure 8. SNR quantifies information content in V1. (a) The total
number of threshold crossings is plotted against orientation angle for
a single channel at a threshold of θ=1. (For visualization purposes,
the data points are jittered around the true orientation angle.) Signal
is defined as the variance of the mean number of threshold crossings
across each orientation (orange). Noise is defined as the mean of the
variance of the number of threshold crossings across each orientation
(black). (b) The calculations are performed at each threshold for
orientation (blue) and contrast (red). Signal and noise both vary with
threshold setting. The orange dot highlights the values that come
from the tuning curve in A. (c) Combining the relationships in B
shows that SNR exhibits an inverted-U shaped relationship with
threshold.
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directional parameter that has a small tuning scale relative to
the listening sphere of the electrode, meaning the correlation
in tuning among neurons falls off relatively quickly with
distance. The light and dark gray regions represent a para-
meter that has a large tuning scale relative to the listening
sphere of the electrode, meaning the correlation in tuning falls
off relatively slowly with distance. The topographic scale of
the stimulus parameter impacts the information present in the
extracellular recording at different thresholds. At low detec-
tion thresholds, threshold crossings comprise multi-unit
activity and tuning should better reflect those parameters that
are homogeneously encoded among the population of neurons
local to the electrode (figure 10(c), gray). In contrast, we
expect parameters that are more heterogeneously encoded to
be better represented at high detection thresholds, where
threshold crossings reflect the tuning of individual neurons
(figure 10(c), black). Accordingly, in M1 we observed that
velocity has a higher optimal threshold than speed.

The influence of topographic scale on information encoding by
threshold crossings

We introduce a conceptual model based on the topographic
scale of information encoding to explain our results
(figure 10). If we apply that model to V1’s pinwheel orga-
nization of orientation preference, we should expect a change
of <30° for neurons within the putative sampling radius of
our electrode at the lowest detection threshold. So, the
topographic scale of orientation is on the order of the sam-
pling radius. The topographic scale of contrast is larger than
for orientation: nearly all V1 neurons increase their firing with
increases in contrast. In accordance with this understanding of
V1 topography, we found the optimal orientation threshold to
be similar to but slightly larger than the optimal contrast
threshold. Additionally, the optimal thresholds in V1 were
relatively low, suggesting that including threshold crossings
from more neurons provides more information than does a
single neuron.

Figure 9. SNR in V1 depends on threshold. (a) SNR dependence on threshold for orientation (blue) and contrast (red) for all V1 electrodes
with significant tuning, n=49 (normalized mean±SE). (b) Optimal thresholds for encoding orientation and contrast. (c) The per-channel
difference between the optimal thresholds for orientation and contrast. The mean±SE is shown above the histogram. The mean is
significantly different than 0 (t-test, p=0.004), and significance still holds when the outlier at Δθ=4σ is removed (p=0.0045).
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The heterogeneity of the local M1 PD map is in stark
contrast to the large-scale topography of V1 orientation col-
umns (Schieber and Hibbard 1993). However, in an effort to
make sense of the structure of M1, a columnar organization
similar to that observed in V1 has been proposed (Amirikian
and Georgopoulos 2003). This hypothesized structure of M1
consists of mini-columns of neurons with similar PDs 30 μm
in width and repeating every 240 μm (Georgopoulos
et al 2007). Such structure would lead to a nearly complete set
of PDs represented by neurons within the ∼200 μm sampling
radius of an electrode. This is a far less homogeneous local

structure than that seen in V1. Consistent with this model, at
high detection thresholds, velocity is encoded well by
threshold crossings. This recapitulates the well-known PD
tuning of individual neurons in M1 (Schwartz et al 1988).
However, within the larger effective sampling radius specified
by a low threshold, the diversity of PDs of the contributing
neurons weakens the measured velocity tuning. On the other
hand, most M1 neurons tune monotonically to speed (Moran
and Schwartz 1999). Thus, speed encoding is strongest at low
thresholds, since many neurons contribute to the threshold
crossings. This can explain our observation of higher optimal
thresholds for velocity than for speed.

The information available at low voltage threshold set-
tings is not just a watered-down version of the information
available at higher thresholds. Although speed may be
thought of as a less specific version of velocity (speed can be
derived from velocity, but velocity is not uniquely specified
by speed), speed and direction are independent quantities, and
when we repeat our analyses using movement direction, we
find direction and velocity have similar optimal thresholds
(data not shown). Further, contrast cannot be derived from
orientation, and we find the best threshold for orientation
information is higher than for contrast. The primary char-
acteristic influencing the optimal threshold of a parameter is
whether it is represented homogeneously by the cortical
population, or heterogeneously. The directional quantities,
velocity and orientation, are heterogeneously represented,
while the scalar parameters, speed and contrast, are homo-
genously represented.

Our results imply that even single electrodes might be
useful for inferring the topography of tuning properties in
brain areas where it is not known. By sweeping the event
detection threshold and computing the SNR to various para-
meters of interest, some notion of the relative homogeneity of
tuning to different parameters can be gained. Parameters that
drive neurons in a heterogeneous, uncorrelated way over short
spatial scales should be best represented at relatively high
thresholds. In contrast, parameters whose tuning correlates
over larger spatial extents should be better represented at
lower thresholds. This knowledge could be critical in
designing more effective extracellular recording experiments
to reveal the nature of the information present in a given
brain area.

Implications for online decoding

In many successful BCIs to date, information is extracted
directly from sorted spikes recorded from chronically
implanted extracellular electrodes. Although BCIs based on
sorted spikes have shown impressive performance both in the
lab (Wessberg et al 2000, Taylor et al 2002, Velliste
et al 2008, Ethier et al 2012, Gilja et al 2012, Ifft et al 2013)
and in controlled clinical trials (Simeral et al 2011, Collinger
et al 2013), spike-sorting is widely acknowledged to be time-
consuming, and hard to automate (Lewicki 1998). Because of
these challenges, the spike-sorting step, once thought to be
critical to BCI performance, may actually inhibit the

Figure 10. Information content depends on the voltage detection
threshold and the topographic scale of the parameter of interest. (a)
A change in the detection threshold might change the effective
sampling radius of the electrode. As we decrease the detection
threshold of an electrode (move from blue to yellow to orange), we
increase its effective sampling radius. (b) The relationship between
effective sampling radius and the topographic scale of an encoded
parameter. The black arrows represent a parameter that is encoded on
a small scale. The gray regions represent a parameter that is encoded
on a larger scale. The color scheme of the sampling radii is the same
as above. (c) The information content of a signal depends on the
threshold setting and the local topography such that a parameter
encoded on a large scale (gray) has a lower optimal threshold than a
parameter encoded on a small scale (black).
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translation of BCIs from the lab to the clinic. Here we add to
that perspective by showing that better information extraction
might be possible if thresholds are tuned for the parameter of
interest, rather than set as if for spike sorting. The benefits
should be especially salient for electrode channels where no
identifiable single neuron is present.

The use of threshold crossings is becoming more pre-
valent in online decoding studies. This is not surprising given
that in offline analyses multiunit activity and threshold
crossings have yielded decoding performance and encoding
fidelity that is comparable to or better than sorted spikes or
local field potentials (Stark and Abeles 2007, Ventura 2008,
Chestek et al 2011, Kloosterman et al 2014, Malik et al 2014,
Todorova et al 2014, Christie et al 2015, Perel et al 2015).
Recently, we and others have begun to recognize the need to
investigate threshold setting in a principled way. Christie and
colleagues (Christie et al 2015) found optimal thresholds for
decoding performance to be between 3–4.5 times the rms
voltage (Vrms). Importantly, they only considered threshold
settings from 3–18×Vrms; they did not consider threshold
crossings at lower threshold settings. A separate study by our
team included lower voltage fluctuations in their threshold
crossings by using an approach similar to the exclusive
windows analysis presented here, and found that threshold
crossings at θ=3σ actually improved decoding as compared
to only well-sorted spikes (Todorova et al 2014). This result
corroborates our finding that the low voltage fluctuations are
not noise, but rather, they do contain useful information:
speed-related information that is distinct from the velocity
information present at higher thresholds. For the thresholds
and parameters we considered, the optimal thresholds were
lower than typically used in online decoding studies (Gilja
et al 2012, Hochberg et al 2012, Sadtler et al 2014), sug-
gesting that there is information available in extracellular
recordings that is being discarded, and could be useful for
improving BCI performance. Ideally, the detection threshold
would be customized for each channel. In fact, each channel’s
signal could be duplicated and thresholded separately for each
parameter used in a BCI.

Notably, the thresholds that we found to be optimal are
lower than thresholds typically reported in published studies.
In M1, particularly for online BCI experiments using
threshold crossings, a fixed threshold of θ=4.5σ is com-
monly chosen (Gilja et al 2012, Hochberg et al 2012) pre-
sumably because it approximates spike sorting. Some of the
best online BCI control has been achieved with this com-
monly chosen threshold. However, we observed only 14 of 67
(20%) channels that showed optimal velocity thresholds
greater than or equal to θ=4.5σ. This was even more
apparent for speed, where only three channels had optimal
thresholds at the level commonly chosen. Optimal thresholds
are likely to depend on many factors, including recording
quality and the age of the implant. It stands to reason that
even better BCI decoding may be possible if the threshold is
chosen with information content in mind.

Conclusions

Historically, neurophysiologists have processed extracellular
voltage recordings to extract action potentials from isolated
single neurons, essentially ignoring small amplitude voltage
fluctuations. This makes sense if the focus is on a careful
characterization of the properties of single neurons. However, if
the goal is to get as much information as possible from a
recorded signal, processing can only reduce available infor-
mation (Cover and Thomas 1991). Accordingly, we have
shown that non-spike parts of the recorded signal, in particular
the low voltage fluctuations, include useful information about
some parameters, and should not be discarded as noise. Our
results suggest that signal preprocessing in neurophysiology
experiments deserves careful consideration: one approach does
not necessarily fit all applications. For recordings from a given
brain area, it would be advantageous to sweep a range of
thresholds to find the optimal choice for the desired information
and planned experiment. For applications that do not require
real-time processing, there is value in streaming the entire raw
voltage signal to disk for offline analysis, and then considering
the information content at different threshold settings. The
practice of adjusting the detection threshold to the parameter of
interest may improve our ability to determine how the brain is
organized to encode sensory information, and it may improve
our ability to accurately decode motor intentions.
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