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Models of divisive normalization can explain the trial-averaged
responses of neurons in sensory, association, and motor areas under
a wide range of conditions, including how visual attention changes
the gains of neurons in visual cortex. Attention, like other modulatory
processes, is also associated with changes in the extent to which pairs
of neurons share trial-to-trial variability. We showed recently that in
addition to decreasing correlations between similarly tuned neurons
within the same visual area, attention increases correlations between
neurons in primary visual cortex (V1) and the middle temporal area
(MT) and that an extension of a classic normalization model can
account for this correlation increase. One of the benefits of having a
descriptive model that can account for many physiological observa-
tions is that it can be used to probe the mechanisms underlying
processes such as attention. Here, we use electrical microstimulation
in V1 paired with recording in MT to provide causal evidence that the
relationship between V1 and MT activity is nonlinear and is well
described by divisive normalization. We then use the normalization
model and recording and microstimulation experiments to show that
the attention dependence of V1–MT correlations is better explained
by a mechanism in which attention changes the weights of connec-
tions between V1 and MT than by a mechanism that modulates re-
sponses in either area. Our study shows that normalization can
explain interactions between neurons in different areas and provides
a framework for using multiarea recording and stimulation to probe
the neural mechanisms underlying neuronal computations.
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Divisive normalization, which describes nonlinearities in the way
that neurons respond to combinations of stimuli, can explain

the trial-averaged responses of neurons in many brain areas in
many animals and under a wide range of conditions (1). For ex-
ample, several studies have used normalization models to charac-
terize how visual attention, which improves perception of attended
stimuli, scales the responses of neurons in visual cortex (2–7).
Attention, like other processes that divisively scale responses, is

also associated with many other changes to the responses of neu-
rons in visual cortex. For example, we recently recorded simulta-
neously from individual neurons in the middle temporal area (MT)
and several dozen neurons in primary visual cortex (V1) (8). In
contrast to the well-known attention-related decreases in the cor-
related variability of the responses of similarly tuned neurons within
the same cortical area (8–16), we found that attention increases the
extent to which neurons in V1 and MT share trial-to-trial variability
(termed spike count or noise correlations, or rSC).
We hypothesized that the attention-related increase in cross-area

correlations would place constraints on the neuronal mechanisms
underlying attention, but it is consistent with at least three possible
non–mutually exclusive mechanisms (Fig. 1). One possibility is that
attention modulates the responses of V1 neurons, perhaps through
a top-down input. In our previous study, as in many others (17–19),
attention slightly increased the firing rates of V1 neurons (8). In
this scenario, the increased rates of V1 neurons whose receptive
fields overlap the attended location increases their influence on the
MT neuron, so the attention-related increase in cross-area corre-
lations is simply inherited from the changes in V1. Second, atten-
tion might increase the effective weighting or influence of direct or

indirect connections between V1 and MT. This possibility is con-
sistent both with a long-standing hypothesis that attention increases
communication between areas on short timescales (20), and with a
model that suggests attention similarly increases the weight of both
excitatory drive and divisive inhibition when multiple stimuli are in
a neuron’s receptive field (6). Finally, attention might influence the
membrane potential or some other aspect of the activity of MT
neurons directly, changing the proportion of EPSCs from V1 that
produce spikes in MT.
The goal of this study is to use a combination of simulations and

experiments to determine which hypothesized mechanism best
accounts for the attention-related changes in cross-area correla-
tions we observed. Our simulations require a descriptive model
that can account for firing rates and correlations of neuronal re-
sponses. We considered two models: a normalization model and a
linear model. We previously showed that a normalization model of
attention that hypothesizes that the tuning of MT neurons comes
from their feedforward inputs can account for many aspects of the
mean responses of V1 and MT neurons and the V1–MT correla-
tions we measured (21). In particular, the model accurately pre-
dicts that attention increases correlations between neurons in
V1 and MT, and that cross-area correlations depend on stimulus
properties (such as motion direction) that do not affect within-area
correlations. Although this model accounts for the mean rates of
MT neurons and the V1–MT correlations substantially better than
a model in which the responses of V1 and MT neurons are linearly
related (21), the linear model does not fail completely, and the
better performance of the normalization model is largely quanti-
tative, rather than qualitative.
We realized that the linear and normalization models made

qualitatively different predictions about the way that adding extra
spikes in V1 would affect responses in MT. We found that elec-
trically stimulating neurons in V1 affected MT responses in a way
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that was consistent with the predictions of the normalization model
and was inconsistent with the predictions of a linear model.
This affirmation of the normalization model, combined with our

previous observations that the normalization model can account
for many physiological observations, provides a strong rationale for
using the normalization model to dissociate between the possible
explanations for the attention-related increase in cross-area cor-
relations. We used simulations to show that the attention-related
increase in V1–MT correlations is inconsistent with the hypothesis
that the correlation increase is a by-product of attention-related
changes within V1. However, the simulations showed that our
observations are well explained by the idea that attention changes
the weighting, or influence, of direct or indirect connections be-
tween V1 and MT. We then used recording and microstimulation
experiments to show that the weight change is more likely to be
caused by a change in the efficacy of direct or indirect synapses
between V1 and MT than by changes to the response properties of
the MT neurons themselves. Our study therefore suggests that
attention acts at least in part by improving the communication of
neurons representing the attended parts of a visual scene. More
generally, our study expands current models to show that nor-
malization can capture the transformation of sensory information
between brain areas and provides a framework for using correlated
variability to probe the neural mechanisms underlying canonical
neural computations.

Results
A Causal Test of the Normalization Model of Attention. The goal of
the current study is to use the normalization model to investigate the
neuronal mechanisms underlying attention; we did so below using
simulations that are based on the normalization model. The logic
behind this approach requires accepting that normalization provides
a good account of the way that mean firing rates and cross-area spike-
count correlations depend on the visual stimulus or task condition.
Divisive normalization is well known to provide a good account

of the trial-averaged responses of neurons in a wide variety of
model systems, brain areas, and stimulus and task conditions (1).
We recently showed that normalization can also account for cross-
area correlations: a simple extension of a normalization model in
which the responses of pools of V1 neurons are hypothesized to
represent feedforward inputs to modeled MT neurons can also
account for the way that spike count correlations between V1 and
MT depend on the visual stimulus and on the animal’s attentional
state (21) (Eqs. 1–3). The hypothesis underlying that extension of

the normalization model is that the tuned component of the MT
neuron’s response would come from neurons whose responses are
correlated on a trial-to-trial basis with the average response of the
two groups, or pools, of V1 neurons we recorded.
The results of our simulations depended strongly on the nor-

malization terms in the denominator of Eqs. 1–3, so it is important
to justify their inclusion in the model. We showed previously that
normalization provides a better account of trial-averaged rates and
correlations than a linear model that does not include those nor-
malization terms (21). However, neither model perfectly succeeds
nor perfectly fails to account for our observations. In our data set,
the normalization model (Eqs. 1–3) accounts for 92% of the vari-
ance in the mean responses of the MT units we recorded across
stimulus and attention conditions, and 65% of the variance in the
correlations between the MT units and V1 pools. A linear model in
which the response of the MT neuron is modeled as the numera-
tors of Eqs. 1–3 perform significantly worse, but still accounts for
the majority of the variance in both cases (85% of the variance in
mean responses and 53% of the variance in V1–MT correlations).
To further justify the normalization terms in our model, we used

a causal manipulation to differentiate between the normalization
and linear models. The normalization model predicts that the ef-
fect of extra spikes in a pool of V1 neurons on MT responses
should depend on stimulus contrast, because the MT unit’s re-
sponse depends on the relative activity of the pools of V1 neurons
whose receptive fields overlap the stimuli moving in the MT unit’s
preferred and null directions. For example, adding « extra spikes to
the activity of the pool of V1 neurons whose receptive fields
overlap the MT unit’s preferred stimulus [so that the activity of that
pool is given by V1PðcPÞ+ «] while the animal is attending toward
the stimulus moving in the MT unit’s preferred direction would
increase the response of the MT unit by βsP«=ðβcP + αcN + σÞ.
When contrast is low, the denominator is small, so the normali-
zation model predicts a bigger increase than when the contrast is
high. In contrast, the linear model predicts that adding « extra
spikes to the V1 pool will produce the same number of extra
spikes in the MT unit (given by βsP«) for any stimulus contrast.
We tested this prediction by measuring the number of extra MT

spikes produced using subthreshold microstimulation in V1 while
the animal performed the direction change detection task on visual
stimuli presented at different contrasts (Fig. 2). Although stimu-
lation artifacts prevented us from measuring the effect of V1
electrical stimulation directly, we hypothesized that the effect of
V1 microstimulation on V1 responses would not depend on the
contrast of the visual stimulus; if so, the normalization model
predicts that electrically stimulating V1 should have a greater net
effect on MT responses (whether that effect is suppressive or ex-
citatory, depending on whether the number of extra V1 spikes « is
positive or negative) when the visual stimulus is low rather than
high contrast. Furthermore, because the attention term β appears
in both the numerator and denominator of Eqs. 2 and 3, the
normalization model predicts that the difference between the
number of MT spikes produced by V1 microstimulation at low and
high contrast should not depend strongly on attention.
The linear model makes very different predictions. This model

predicts that the number of extra MT spikes produced by V1
microstimulation should not depend on contrast. The model
therefore predicts that the difference in the number of extra MT
spikes when the stimulus is low and high contrast should be near
zero regardless of attention.
To visualize these predictions, we fitted the normalization model

to the 64 MT units/stimulus conditions for which we simultaneously
recorded the responses of several dozen V1 units (Methods). In a
previous experiment, we observed that V1 microstimulation could
have either a suppressive or excitatory effect onMT rates during the
time period of microstimulation (Fig. 3), and we could not predict
the sign or magnitude of these effects from the properties of the

V1 MT

attention

input
to MT?

change in
weighting?

input
to V1?

Fig. 1. Schematic of non–mutually exclusive possible mechanisms that could
account for the attention-related increase in rSC between V1 and MT. First,
attention could modulate the responses of V1 neurons, perhaps through a
top-down input. Second, attention might increase the effective weighting or
influence of direct or indirect connections between V1 and MT. Finally, at-
tention might influence the activity MT neurons directly.
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neurons we measured (8). We therefore randomly assigned a
microstimulation effect « to each pool of V1 units and assumed that
this effect of V1 stimulation on V1 rates varies from trial to trial
according to Poisson statistics.
Fig. 4 plots the predictions of the normalization and linear models

concerning the number of extra MT spikes elicited by V1 micro-
stimulation when the visual stimulus has low or high contrast (Fig. 4
A and C) and the effect of attention on the difference between the
number of extra MT spikes elicited by V1 microstimulation during
presentations of low- and high-contrast visual stimuli (Fig. 4 B and
D). These simulations are imperfect in several ways: they are based
on different V1 and MT units than those whose responses we
recorded during the microstimulation experiments; they involve as-
sumptions about the lack of dependence of the effect of V1
microstimulation on V1 rates on stimulus contrast; and they involve
randomly assigning a microstimulation parameter « to each pool of
V1 units. However, it is clear that the normalization model and the
linear model make qualitatively different predictions.
Our observations strongly support the predictions of the nor-

malization model. The effect of V1 microstimulation on MT re-
sponses was strongly correlated for low- and high-contrast visual
stimuli (R = 0.59, P < 10−17), but the slope of the best-fit line re-
lating the two is significantly less than 1 (slope = 0.37, bootstrap,
P < 10−4; Fig. 4E). The difference in the number of extra MT spikes
elicited during low- and high-contrast visual stimuli when the animal
attended toward vs. away from the receptive fields of the stimulated
V1 units was also strongly correlated (R = 0.96, P < 10−103), but the
slope of the best-fit line was not significantly different from 1
(slope = 0.97, bootstrap, P = 0.48; Fig. 4F). These data, although
not identical to the predictions of the normalization model, are
much more similar to the predictions of the normalization model
than those of the linear model.
Our simulations assume that the number of extra V1 spikes eli-

cited by microstimulation did not depend on the contrast of the
visual stimulus. One possibility, however, is that the firing rates of
the V1 neurons were closer to saturation during presentations of
high- than low-contrast visual stimuli. In this case, a ceiling effect
might have reduced the number of extra V1 spikes produced by
microstimulation on high-contrast trials. Stimulation artifacts pre-
vent us from measuring the number of extra V1 spikes elicited, so
we used simulations to determine how this sort of ceiling effect
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Fig. 2. Recording, microstimulation, and psychophysical methods. (A) Schematic
of the motion direction change detection task used in all experiments. Once the
monkey fixated a central spot, either two or three small Gabor stimuli synchro-
nously flashed on for 200ms and off for a randomized 200- to 400-ms period. Two
of the stimuli were positioned inside the joint receptive fields of the MT and
V1 neurons we recorded, and the third (when present, which was on one out of
every three blocks of trials) was placed in the opposite hemifield. After an
unsignaled and randomized number of stimulus presentations (picked from an
exponential distribution, minimum 2, mean 6, maximum 14 stimulus presenta-
tions), the direction of one of the stimuli changed. The monkeys were cued in

blocks of 50–100 trials to detect changes in (and therefore attend to) one of
the stimuli and ignore motion direction changes in the other stimulus lo-
cations. The monkeys were rewarded for making a saccade to the attended
stimulus within 500 ms of the stimulus change. Distractor changes were
never rewarded. The contrasts of the stimuli were either all 8% or all 100%,
and contrast was randomly interleaved on each stimulus presentation. The
two stimuli within the receptive field moved in opposite directions (the
preferred and null directions of the MT cell under study for the experiments
used to measure spike count correlations and fit the models), and which of
the two stimuli moved in the preferred direction varied randomly from trial
to trial. When present, the stimulus in the opposite hemifield moved in a
direction that was orthogonal to the directions of the stimuli inside the MT
units’ receptive fields. (B) Receptive fields and visual stimulus locations from
an example experimental session. We recorded simultaneously from a 96-
channel chronically implanted microelectrode array in area V1 and a single
electrode or a movable 24-electrode probe in area MT. We selected MT units
whose receptive fields (black dashed circle in this example) overlapped the
envelope of receptive fields of the neurons we recorded in V1 (centers
denoted by the gray dots). The locations and approximate sizes of the visual
stimuli are denoted by the solid black circles. For the electrical micro-
stimulation experiments, (C) microstimulation was delivered for 50-ms pulses
at 200 Hz during a randomly selected 50% of stimulus presentations in each
trial. (D) Channels were selected for microstimulation if the receptive fields
of the neurons on them clearly overlapped with just one stimulus, as the
orange receptive field center does, and if microstimulation led to an ob-
servable change in MT firing rates during microstimulation.

Ruff and Cohen PNAS Early Edition | 3 of 10

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S



would change the predictions of the linear model (Fig. 4 C and D).
To match the slope of the line relating the effect of V1 micro-
stimulation on MT responses to low- and high-contrast visual
stimuli using the linear model, we needed to assume that micro-
stimulation produces 3.84 times as many V1 spikes on low- than
high-microstimulation trials; this is a large difference, but it is pos-
sible if the responses of most V1 neurons to high-contrast stimuli
are near saturation.
Two factors make us think the scenario that a ceiling effect

combined with a linear relationship between V1 and MT responses
cause the results in Fig. 4 is unlikely. First, the responses of most
V1 units to high-contrast visual stimuli were likely not especially

close to saturation because the second stimulus was in the sup-
pressive surround of most units. Second, we found previously that
the normalization model captures substantially more of the stim-
ulus and attention variability in mean rates and V1–MT spike
count correlations (21). We therefore conclude that the most
plausible interpretation of the results in Fig. 4 is that they provide
causal support for the argument that normalization provides a
good account of the relationship between activity in V1 and in MT.

Attention Affects the Responses of V1 Neurons and Interactions
Between V1 and MT. Our primary goal was to use observations
about attention-related changes in the rates, variability, and spike
count correlations between pairs of V1 units or between units in
V1 and MT to evaluate hypothesized mechanisms underlying at-
tention. We previously reported that during this task, attention
increased the trial-averaged firing rates of V1 units, decreased the
spike count correlations between pairs of V1 units, and increased
the spike count correlations between V1–MT pairs (8).
Because our normalization model takes as inputs the summed

activity of pools of V1 units whose receptive fields overlap the
visual stimulus moving in either the MT neuron’s preferred or null
direction, we calculated the effects of attention on various mea-
sures of the activity of pools of V1 neurons as a whole (seeMethods
for details of pool assignment). Directing attention to the receptive
fields of the pool of V1 neurons was associated with modest firing
rate increases [mean = 1.84 spikes per second (sp/s), which is
significantly greater than zero, t test, P < 10−8]. The overall de-
crease in the spike count correlations between pairs of V1 units
corresponds to a decrease in the variance of the activity of the pool
as a whole (mean = –2.87 sp2/s, which is significantly less than zero,
t test, P < 0.05). Because the responses of the V1 units that made
up each pool were overwhelmingly positively correlated, the
attention-related increase in V1–MT spike count correlations was
greater for the average of the pool, mean = 0.039, which is sig-
nificantly greater than zero, t test, P < 0.03) than for the individual
units (0.018) (8).
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Fig. 3. Example raster plots from two example MT units of activity with and
without electrical microstimulation in V1. The rasters show the first 50 non-
microstimulated (black) and microstimulated (gray) high-contrast stimulus
presentations from trials in which the monkey directed its attention toward
the stimulus overlapping the receptive fields of the microstimulated
V1 neurons. The visual stimulus came on at time 0, and the orange bar de-
picts time period during which the microstimulation occurred. Fig. 4 is based
on spikes during the microstimulation period, and the green bar depicts a
100-ms period following microstimulation during which spikes were counted
for the analyses presented in Fig. 7B.
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Fig. 4. Electrical microstimulation results support the normalization model. (A) Predictions of the normalization model for the number of extra MT spikes elicited
by V1 microstimulation when the visual stimulus was high contrast (y axis) vs. low contrast (x axis). The dashed line is unity, and the solid line is the best fit line to
the model’s predictions. (B) Predictions of the normalization model for the difference between the numbers of extra MT spikes elicited by V1 microstimulation
during high- and low-contrast visual stimulus presentations when the animal attends (y axis) or ignores the visual stimulus overlapping the receptive fields of the
stimulated V1 neurons. Conventions as in A. (C and D) Same as A and B for the linear model. (E and F) Same as A and B for actual data.
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The Normalization Model Suggests That the Attention-Related V1–MT
Correlation Increase Comes from an Increase in the Weighting of V1
Inputs to MT. The normalization model allows us to distinguish
between two of the possible sources of the attention-related in-
crease in V1–MT correlations we observed. The model lets us
evaluate the feasibility of the ideas that the attention-related in-
crease in cross-area correlation is simply inherited from attention-
related changes in V1 (quantified as changes in either the rates or
variance of the activity of the pool of V1 units) or comes from
changes in the influence of V1 neurons on MT responses. If at-
tention were associated with sufficiently large increases in the rate
or increases in the variance of the attended pool of neurons, those
neurons would have a proportionally larger effect on the activity of
the MT neuron than those in the unattended pool, which would
cause a correlation increase. The hypothesis seems unlikely be-
cause the V1 rate changes we observed were small and attention
was associated with decreases, rather than increases, in the variance
of the attended pool of neurons. Alternatively, the V1–MT cor-
relation increase could be caused by attention-related changes in
the weighting, or influence, of the V1 neurons that represent the
attended and unattended stimuli (which corresponds to the pa-
rameter β in our model). (We address a third possibility, that at-
tention modulates the responses of MT units directly, using
experimental results below.) To distinguish between the first two
possibilities, we simulated the responses of pools of V1 neurons
(Methods) to determine the impact of changing their responses or
changing the weighting parameter β on the attention-related
changes in V1–MT correlations predicted by the model.
Although the actual attention-related changes we observed in

the V1 neurons we recorded were very small (8), we varied the
magnitude of the simulated attention-related changes in V1 to
allow for the possibility that subsets of V1 units whose responses
are unusually modulated by attention have a proportionally bigger
or smaller impact on the responses of MT units. Attention has at
least two effects on populations of visual neurons, multiplicatively
scaling firing rates (17–19) and changing the variance or co-
variance of neuronal responses (8–16, 22). Changes in either
variance or covariance would change the variance of the mean
response of the pool of neurons. We therefore tested the effect of
changing the mean (x axis in Fig. 5A) and variance (y axis in Fig.
5A) of the modeled V1 neurons on the predicted attention-related
change in V1–MT correlation (color in Fig. 5A).
Even when we simulated pools of V1 neurons with unphysio-

logically large (3,200%) changes in mean and/or variance, the
predicted attention-related change in V1–MT correlation was
smaller than we observed (actual change in correlations between
pools of V1 units and MT = 0.039, which is the brightest yellow in
the color scale of Fig. 5A and never appears in the main plot;
actual change in V1 rate/variance is the white X in Fig. 5A, which
corresponds to a very small change in V1–MT correlation). These
simulations suggest that although it is possible that changes within
V1 contributed to the attention-related changes in V1–MT cor-
relation, V1 changes were not the primary source of the observed
correlation increase.
We also addressed the possibility that the attention-related in-

crease in V1–MT correlation was caused by changes in the weighting
or influence of V1 neurons representing the attended stimulus on
MT responses. This idea is consistent with the long-standing hy-
pothesis that attention changes communication between visual areas
(for review, see ref. 20). To determine the effect of changing the
weighting of particular V1 inputs on V1–MT correlations, we varied
the parameter β in Eqs. 2 and 3 (x axis of Fig. 5B; Methods).
Varying the parameter β had a large effect on the model’s

predicted attention dependence of V1–MT correlations (y axis in
Fig. 5B). The mean fitted value of β was 1.96 (vertical line in Fig.
5B), and the observed attention-related change in V1–MT cor-
relation was 0.039 (horizontal line in Fig. 5B). The fact that the
black line intersects the crossing of the dashed lines so closely

indicates that the attention-related change in V1–MT correlation
can be almost completely accounted for in the model by changes
in the parameter β.
The simulations in Fig. 5 rely on a quantitative comparison be-

tween the model’s prediction and the data. However, in the model,
the only source of variability in MT responses is inherited from V1.
As a result, the raw V1–MT correlations are unrealistically high
and the Fano factor of the modeled MT unit is unrealistically low.
In a previous study (21), we compensated for this by adding in-
dependent, zero-mean Gaussian noise to the responses of the MT
unit until we quantitatively matched the mean V1–MT correlation
across all conditions. This modified model was inaccurate in a
different way, however, because quantitatively matching the cor-
relations required adding so much noise that the average Fano
factor of the modeled MT units was 106, which is much larger than
for the recorded MT units (which was 1.41).
Importantly, however, the modified model made quantitatively

nearly identical predictions about how attention changes V1–MT
correlations. For example, the original model predicts that the
attention-related change in correlation will match the data when
β =1.86, whereas the modified (high noise) model predicts a match
to the data when β =1.91, neither of which is statistically distin-
guishable from the median fitted β, which was 1.96 (t tests, P >
0.05). Therefore, both versions of the normalization model suggest
that the most parsimonious explanation of our results is that at-
tention changes the influence of the V1 neurons that represent the
attended stimulus on MT responses.

Experimental Evidence Suggests That Attention Improves Synaptic
Efficacy Between V1 and MT. Our simulations suggest that atten-
tion changes the effective influence of the V1 units whose receptive
fields overlap the attended stimulus; this could be accomplished by
changing the efficacy of the synapses that either directly or in-
directly connect V1 to MT or by changing the membrane voltage
or some other aspect of the response properties of the MT neuron
that would make spikes from V1 inputs more or less likely to elicit
spikes in MT. Because our normalization model is descriptive rather
than mechanistic, these potential mechanisms are indistinguishable in
our model (and are also indistinguishable in a previous study that
measured attention-related changes in the way that thalamic inputs
influence the activity of V1 neurons) (23). However, the two mech-
anisms make different predictions that are testable experimentally.
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(y axis) of the responses of the V1 pools on predicted V1–MT correlations.
Color represents the predicted change in V1–MT correlation. The bright
yellow at the top of the color bar (which never appears in the main plot)
represents the observed attention-related change in V1–MT correlation, and
the white x represents the observed attention-related changes in mean re-
sponse and variance of the V1 pools. (B) Predicted V1–MT correlation change
as a function of the parameter β in Eqs. 1–3. The red dashed line represents
the observed attention-related change in V1–MT correlation, and the black
dashed line represents the fitted value of β.

Ruff and Cohen PNAS Early Edition | 5 of 10

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S



The efficacy, or weighting, of synapses that either directly or
indirectly connect V1 to MT is monotonically related to both the
correlation between V1 and MT and the effect of microstimulating
V1 on MT responses. Fig. 5B shows the monotonic relationship
between the parameter β and the predicted attention-related
change in V1–MT correlation. Because we calculate V1–MT cor-
relation for individual stimulus and attention conditions, the syn-
aptic efficacy is proportional to the parameter β for an individual
condition. (The other parameters, including the denominator, are
constants for an individual condition.) Therefore, Fig. 5B also
shows that for an individual condition, V1–MT correlation is
monotonically related to the synaptic efficacy. An attention-related
increase in synaptic efficacy should always increase V1–MT cor-
relation, regardless of whether attention increases or decreases the
rate of the MT cell. By similar logic, an attention-related increase
in synaptic efficacy should always increase the effect of micro-
stimulating V1 on the firing rate of the MT unit.
In contrast, the hypothesis that the attention-related changes to

V1–MT correlation or to microstimulation efficacy that we ob-
served are caused by changes to the MT cell makes different
predictions. Fig. 6 shows the relationship between the MT cell’s
baseline membrane potential and V1–MT correlation. Borrowing
a procedure from previous work (24, 25), we simulated correlated
membrane potentials for the V1 and MT cells by picking values
for each trial from a bivariate normal distribution (Fig. 6 A and B,

Left; the panels in A and B are identical except for the mean of the
putative MT neuron’s membrane potential). We simulated the
relationship between the membrane potential of the MT cell and
its firing rate using a nonlinearity used in previous studies (26);
Fig. 6 A and B, Center; the exact shape of the nonlinearity does not
qualitatively affect these results).
Our simulations show that when the MT neuron’s mean mem-

brane potential is above threshold (Fig. 6A), the spiking correlation
is similar to the membrane potential correlation. When the mean
membrane potential is low, however (as in Fig. 6B), the spiking
correlation is substantially lower than the membrane potential
correlation. The relationship between the MT neuron’s membrane
potential and the spiking correlation is summarized in Fig. 6C. The
quantitative relationship depends on experimentally inaccessible
parameters such as the synaptic weight, the spiking threshold, or the
shape of the threshold nonlinearity. These simulations show, how-
ever, that the relationship between the mean membrane potential
of the MT unit and the V1–MT correlation and, by extension, the
effect of adding spikes to V1 on the MT response, is monotonic.
Because our recordings were extracellular, we were unable to

measure the effect of attention on the mean membrane potential
of the MT unit. However, because the relationship between
membrane potential and firing rate is monotonic, we can use the
sign of the attention-related change in firing rate as a rough es-
timate of the change in membrane potential. Because on average,
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Fig. 6. V1–MT correlations depend monotonically on the MT neuron’s membrane potential. (A and B, Left) Membrane potentials of simulated MT neurons
that differ only in their membrane potential relative to threshold as a function of the firing rate of a simulated V1 neuron. In both cases, the correlation
between V1 and MT membrane potentials was picked to be 0.2. (A and B, Center) The nonlinear relationship between the neuron’s membrane potential and
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attention slightly increases the rate of V1 units, attention should
increase V1–MT correlations when attention increases the rate of
the MT unit and decrease correlations when attention decreases
the rate of the MT unit.
Our data are consistent with the idea that attention changes

correlations between V1 and MT or the effect of V1 micro-
stimulation on MT responses by changing the effective weight be-
tween V1 and MT and are inconsistent with the hypothesis that
these changes are the result of membrane potential changes to MT
units. Attention increased V1–MT correlations regardless of
whether attention increased or decreased the rate of the MT unit
(median attention-related correlation change for MT units for
which attention decreased firing rate = 0.0172, which is significantly
greater than zero, Wilcoxon signed-rank test, P < 0.0001; right bar
of Fig. 7A; median attention-related correlation change for MT
units for which attention increased firing rate = 0.0197, which is
significantly greater than zero, Wilcoxon signed-rank test, P < 10−5;
left bar of Fig. 7A; attention-related change rSC was not significantly
different for the two groups, P = 0.72, Wilcoxon rank sum test).
Furthermore, attention increased the number of extra MT spikes
that followed V1 microstimulation both when attention increased
or decreased the rate of the MT cell (Fig. 7B, which plots the
attention-related change the number of extra MT spikes elicited by
V1 microstimulation minus the attention related change in the
response of the MT unit). This number, termed microstimulation
efficacy, was positive for both subgroups and the two subgroups did
not significantly differ (P = 0.33, Wilcoxon rank sum test).
A final possibility is that attention increases the strength or ac-

tivity of a common, perhaps top-down, input to both V1 and MT.
Such an increase could account for the attention-related increase in
V1–MT rSC, but there are two problems with this hypothesis. First,
an increase in the strength or activity of a common input to the two
areas would likely increase correlations both between V1 and MT
and within each area, which is contrary to the results of many
studies, including ours, that show attention reduces correlations
within each area (8–16). Second, it is difficult to imagine how in-
creasing a common input could account for the attention-related
increase in the effect of V1 microstimulation on MT responses
we observed.
Together, our data and simulations suggest that the most likely

explanation for the attention-related increases in spike count cor-
relations between pairs of V1 and MT neurons come from im-
provements in the efficacy of direct or indirect synapses between
V1 and MT. Future experiments measuring the strengths of these
synapses directly would be necessary to verify this hypothesis.

Discussion
We used a combination of simulations and correlative and
causal experiments to investigate the neuronal mechanisms
underlying the attention-related increase in V1–MT correla-
tions that we observed. We used electrical microstimulation to
causally test the hypothesis that normalization provides a good
description of the transformation of signals between cortical
areas. We then used a normalization model to show that
attention-related changes in correlations between V1 and MT
are unlikely to result from changes within V1 and are most
consistent with a mechanism in which attention changes the
weighting of connections between visual areas. Finally, we used
correlation and microstimulation data to argue against the idea
that this weighting increase comes from changes within MT.

Normalization as a Description of How Signals Are Transformed
Between Cortical Areas. A large and growing literature shows that
normalization provides a good description of the trial-averaged
responses of neurons in a variety of species, brain areas, stimuli, and
task conditions, and it has been proposed to be a canonical neural
computation (for review, see ref. 1). In particular, normalization
accurately accounts for the divisive (or multiplicative) scaling of

neuronal responses associated with a wide variety of modulatory
processes such as the contrast or orientation of visual stimuli (1, 27,
28), multisensory integration (29), reward (30), and attention (2–7).
The present study, combined with our previous work (21), sug-

gests that normalization provides a good description for the way
that visual signals are transformed from V1 to MT as well.
Substituting the responses of groups of V1 neurons for the linear,
stimulus-dependent terms in conventional models accounts for
correlated variability that is shared across areas (21). The same
model predicts that adding spikes to one pool of V1 neurons
should affect MT responses in a way that depends on the contrast
of the visual stimuli, and we verified this prediction using electrical
microstimulation paired with multineuron recordings (Fig. 4).
The ability of the normalization model to account for the way

that signals are transformed between V1 andMTmakes early visual
cortex an important system for studying the neural mechanisms
underlying what may be a canonical neural computation. In the
future, experiments using paired recordings and causal manipula-
tions (ideally targeting specific neuronal subtypes) in the two areas
using a variety of visual stimuli and behavioral tasks may begin to
uncover the circuit mechanisms underlying normalization. Addi-
tionally, because of the task and stimulus demands associated with
recording from a population of V1 neurons and because neurons in
V1 tend to show small modulations due to cognitive and behavioral
factors (18, 31), it will be important to replicate these findings in
other sensory areas where larger effects can be observed.
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Fig. 7. Correlative and causal evidence that the attention-related changes
in the weighting between V1 and MT are not accomplished through
changes within MT. (A) Median attention-related change in V1–MT rSC
under conditions when attention is associated with decreases in the rate of
an MT unit (Left) or increases in the rate of an MT unit (Right). Error bars
represent SEM. (B) Median number of extra spikes elicited by V1 electrical
microstimulation in MT units that respond less (Left) or more (Right) to the
visual stimulus overlapping the receptive fields of the stimulated V1 units.
Conventions as in A.
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Implications for the Neural Mechanisms Underlying Attention. Our
results suggest that attention changes the weighting of either direct
or indirect inputs from V1 to MT. This idea is broadly consistent
with a long-standing hypothesis that attention acts by increasing
communication between cortical areas (20), although this theory is
mostly based on measurements of synchrony between visual cortex
and higher-order cortex (32–37) or between thalamus and primary
visual cortex (23) on very fast (millisecond-level) timescales. The
results of our microstimulation experiments and simulations sug-
gest that attention changes communication between areas on
longer timescales as well. This finding is also consistent with pre-
dictions from an earlier model that was designed to explain changes
in firing rate in V4 neurons during situations when attention is split
between one of two stimuli in a neuron’s receptive field (6).
Many studies have shown that attention is associated with sev-

eral changes in the responses of populations of neurons such as
changes firing rates (17–19) and spike count correlations between
pairs of neurons in the same cortical area (8–16). Although the
relationship between these changes within a cortical area and
population coding is a matter of current study and debate (38–43),
the attention-related changes in rates and correlations are in a
direction that would be expected to improve the information that
populations of neurons can encode about visual stimuli (9, 11, 15).
Our simulations using the normalization model and our corre-

lation and microstimulation data suggest that the between area
attention-related correlation increase is not likely explained by
changes to the properties of neuronal populations in either V1 or
MT, which might be accomplished by top-down inputs to the two
areas. One possibility is that the two mechanisms (increases in
cross-area communication and improvements in population cod-
ing) work in concert to improve perception. In the future, it will be
interesting to see whether the effects of the two mechanisms on
perception can be dissociated.
Normalization is perhaps the most widespread description of a

neural computation that spans many model systems. Our study ex-
pands current models to show that normalization can capture the
way that sensory information is transformed between cortical areas.
The success of this model in accounting for correlated variability and
manipulations using electrical microstimulation, and using these
observations to narrow down potential mechanisms, bodes well for
future work using recordings from groups of neurons to probe the
neural mechanisms underlying canonical neural computations.

Methods
Electrophysiological Recordings. The data in this manuscript come from two
distinct experiments, and a subset of these data havebeenpresentedpreviously
(8, 21) and outlined in more detail below. The subjects in the paired V1–MT
recording experiments (Figs. 4 A–D, 5, 6A, and 7A) were two adult male rhesus
monkeys (Macaca mulatta, 8 and 9 kg), and the subject in the microstimulation
experiments (Figs. 4 E and F and 7B) was the 8-kg monkey. All animal proce-
dures were approved by the Institutional Animal Care and Use Committees of
the University of Pittsburgh and Carnegie Mellon University. Before behavioral
training, we implanted each animal with a titanium head post. After the an-
imal learned the behavioral task (Fig. 2A, described below), we implanted a
10 × 10 chronic microelectrode array (Blackrock Microsystems) in V1 and a
recording chamber that gave us access to area MT. The V1 array was con-
nected to a percutaneous connector that allowed simultaneous recordings
from 96 electrodes. The distance between adjacent electrodes on the array
was 400 μm, and each electrode was 1 mm long. We identified area V1 using
stereotactic coordinates and by visually inspecting the sulci.

The data used to fit the two models (Figs. 4 A–D and 5) and concerning the
effects of attention on the responses of V1 neurons and on the correlations
between V1 and MT come from recordings from the V1 array in which we
simultaneously recorded from a single electrode (Fred Haer Corporation, Inc.)
in MT. We identified MT using the gray and white matter transitions and the
characteristic receptive field properties of MT units. Different analyses of these
data were presented previously (8, 21).

The microstimulation data (Figs. 4 E and F and 7B; stimulation details are
below) come from a separate set of experiments in which we electrically
stimulated from the V1 array while recording from a movable multielectrode

probe (Alpha Omega or Plexon) in area MT. These experiments were per-
formed in the one animal whose V1 array lasted long enough for us to at-
tempt these additional experiments. Different aspects of data from these
experiments (using a subset of the analysis time windows used here, using only
high-contrast visual stimuli, and using very different data analysis methods)
were presented previously (8).

We performed these experiments during daily experimental sessions for
several months in each animal. We included experimental sessions for analysis
when the MT unit’s receptive field largely overlapped the envelope of the
receptive fields of the units we recorded on the V1 array (Fig. 2B) and when
the animal completed at least 150 behavioral trials (mean for the joint V1–MT
recording sessions is 648 completed trials from 32 recording sessions; 12 from
monkey 1 and 20 from monkey 2; mean for the microstimulation experiments
is 519 completed trials from 16 experimental sessions). In the joint V1–MT
experiments, we optimized the direction and speed of the visual stimuli for the
tuning properties of the MT unit.

Visual Stimuli and Behavior. Our methods for presenting visual stimuli and
monitoring behavior have been described elsewhere (8, 21). Briefly, we pre-
sented visual stimuli using custom software (written in Matlab using the Psy-
chophysics Toolbox) (44, 45) on a cathode ray tube (CRT) monitor (calibrated to
linearize intensity; 1024 × 768 pixels; 120 Hz refresh rate) placed 57 cm from the
animal. We monitored eye position using an infrared eye tracker (Eyelink 1000;
SR Research) and recorded eye position and pupil diameter (1,000 samples/s),
neuronal responses (30,000 samples/s), and the signal from a photodiode to
align neuronal responses to stimulus presentation times (30,000 samples/s) us-
ing hardware from Ripple.

We trained the animals to perform amotion direction change detection task
(Fig. 2A) that required them to shift attention between three possible loca-
tions. A trial began when the monkey fixated a small spot within a 1° square
fixation window in the center of the video display. The visual stimuli were
achromatic Gabors whose size and location were picked so that two stimuli lay
within the receptive field of the single MT unit under study (Fig. 2B) or in the
joint receptive field of the group of MT units for the microstimulation ex-
periments. The visual stimuli flashed on for 200 ms and off for a randomized
interval (200-400 ms between each stimulus presentation, picked from a uni-
form distribution). During blocks of trials when attention was directed to one
of the two stimuli within the MT receptive fields, the stimuli were either both
8% contrast (referred to as low-contrast stimulus presentations) or both 100%
contrast (high contrast), and contrast was randomly interleaved on each
stimulus presentation. The stimuli drifted at the same speed, which was se-
lected from a range between 6 and 12° per second (picked to elicit large re-
sponses in the MT units), the two stimuli within the receptive field of the MT
unit moved in opposite directions (the preferred and null directions of the
MT cell under study), and which of the two stimuli moved in the preferred
direction varied randomly from trial to trial.

In separate blocks of trials, the animals were instructed to direct their at-
tention to a third stimulus in the opposite hemifield (“attend opposite” blocks).
In these trials, the two stimuli in the MT receptive field were independently
presented at either 0%, 50%, or 100% contrast. The third, attended, stimulus
was presented at either 8% or 100% contrast, with its contrast randomly in-
terleaved on each stimulus presentation and independently selected from the
contrasts of the stimuli in the MT receptive field. When the third stimulus was
present, it moved in an orthogonal direction to those in the opposite hemi-
field. We used responses from all attention conditions to fit the parameters of
the normalization and linear models.

After an unsignaled number of stimulus presentations picked from an ex-
ponential distribution (minimum 2 stimulus presentations, mean 6 stimuli,
maximum 14 stimuli), the direction of one of the stimuli changed. During each
experimental session we selected a single magnitude of the direction change
designed to get the animal to perform near psychophysical threshold (range:
10–45°). The probability of direction change was independent at each location
(the unattended stimuli each changed on ∼12% of trials). Before the start of
each block of trials, the monkey performed 5–10 instruction trials (which were
not included in any of the analyses) in which there was only a single stimulus.
The location of this stimulus constituted a cue as to the attended location. In
the upcoming block of trials, if the attended stimulus was the one that
changed, the monkey was given a liquid reward for making a saccade to that
stimulus within 500 ms of the change. To account for saccadic latency and to
avoid rewarding the monkey for guessing, the monkey was rewarded only for
saccades beginning at least 100 ms after the change. If no change occurred
within the maximum 14 stimulus presentations, the monkey was rewarded
simply for maintaining fixation. Attention was cued to one of the three
stimulus locations in blocks of 50–100 trials. The monkey was never rewarded
for making a saccade to distractor changes.
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Overall, the monkeys correctly detected the stimulus changes on 66% of
completed trials during the 32 experimental sessions where we recorded
neuronal data from both V1 andMT.When alternating attention between two
stimuli placed within the receptive field of the MT unit, the monkeys detected
90% of the full-contrast direction changes and 42% of the low-contrast di-
rection changes that occurred at the attended location. The monkeys
responded to 21% of the unattended orientation changes, but were not
rewarded for these responses. During blocks of trials when the animals were
instructed to direct attention to the hemifield opposite the joint receptive fields
of the V1 andMT units (“attend away” conditions, which weremuch easier for
the animals because the distractors were far away from the attended stimuli),
they detected direction changes at full contrast 99% of the time and
responded to direction changes at the unattended location 5% of the time.

Normalization Model of MT Responses. We showed previously that a simple
extension of a classic normalization model can largely account for the stimulus
and attention dependence of V1–MT correlations (21). We modeled the re-
sponse R of an MT neuron to a combination of stimuli moving in its preferred
(P) and null direction (N) as

RP,N =
sPV1PðcPÞ+ sNV1NðcNÞ

cP + αcN + σ
, [1]

where RP,N is the mean response of the MT neuron and V1PðcPÞ and V1NðcNÞ
are the trial-averaged (measured) responses of the pools of simultaneously
recorded V1 neurons whose receptive fields overlap the preferred or null
stimuli whose contrast is given by cP or cN. The parameters sP and sN are scaling
parameters that reflect the direction tuning of the MT neuron. The parameter
α represents a tuned normalization parameter that accounts for the obser-
vation that MT neurons vary in the extent to which they exhibit normalization
(4), and σ represents a semisaturation constant.

Attention is instantiated in the model using the scaling parameter β such
that the response of the MT neuron is given by

RPA ,N =
βsPV1PðcPÞ+ sNV1NðcNÞ

βcP + αcN + σ
, [2]

when attention is directed to the stimulus moving in the MT neuron’s pre-
ferred direction, and

RP,NA =
sPV1PðcPÞ+ βsNV1NðcNÞ

cP + βαcN + σ
, [3]

when attention is directed to the stimulus moving in the null direction. In this
model, attention acts to scale both the sensory evidence (numerator in Eqs. 2
and 3) and the relevant normalization terms (denominator in Eqs. 2 and 3).
Together, Eqs. 1–3 have five free parameters (SP, SN, α, β, and σ).

The linear model (Fig. 4 C and D) is identical to the normalization model
except that the denominators of Eqs. 1–3 are set to 1.

We fit the models to the trial-averaged responses of the MT unit in
10 stimulus and attention conditions, using the measured trial-averaged re-
sponses of the V1 units whose receptive fields overlapped each stimulus and
therefore comprised a “pool.” We then predicted the response of the MT unit
on each trial using the fitted model parameters and the actual responses of the
V1 units recorded on that trial. We used the predicted MT responses to cal-
culate predicted spike count correlations between the modeled MT unit and
the recorded V1 units.

We fit our model to each MT unit’s responses to each stimulus configuration
separately (e.g., preferred stimulus at location 1 and null at location 2, or the
opposite). Our data set therefore consisted of 64 MT units/conditions (32 units
recorded in separate sessions, each with two different stimulus configurations).
None of our results failed to reach significance, and none of our conclusions
differed if we restricted analysis to one stimulus configuration per unit. In
contrast, we felt it was most conservative to consider both stimulus configu-
rations to account for differences in the location of each stimulus within theMT
unit’s receptive field or the number of V1 units whose receptive field over-
lapped each stimulus.

We included a V1 unit for analysis, and assigned it to a pool if it responded
significantly more to a full contrast stimulus at one location than the other (t test,
P < 0.01) during the attend-opposite blocks. For example, we assigned a V1 unit
to the preferred pool if it responded more to a visual stimulus at the location
where the preferred stimulus was presented compared with the location of the
null stimulus. The activity of pools of V1 units (used to calculate correlations and
as inputs to the model in Fig. 4) was defined as the average response of all such
V1 units. Across the 64 recording sessions/stimulus configurations, 3,262 V1 units

satisfied this criterion (1,631 unique units). Themean number of V1 units per pool
from each recording session was 25.

Microstimulation Experiments. Our microstimulation procedure has been de-
scribed previously (8). During the microstimulation experiments (Fig. 2 C and
D), we measured the difference between the number of MT spikes elicited by
a visual stimulus combined with electrical stimulation in V1 and the number of
spikes elicited by a visual stimulus alone (Fig. 3). We stimulated through the
V1 array using trains of 200-Hz biphasic pulses (pulse duration = 0.2 μs). We
increased the current (range: 30–65 μA) and number of electrodes (range:
1–3 electrodes) until the V1 microstimulation produced a readily observable
modulation of the responses of the simultaneously recorded MT units (Fig. 3).
If microstimulation in V1 did not modulate the responses of the MT neurons,
we moved the multielectrode probe in MT until we found a site whose re-
sponses were modulated by stimulating V1. We stimulated for a 50-ms period
during randomly interleaved stimulus presentations in the direction change
detection task. Microstimulation never occurred on the first visual stimulus
presentation in a trial, and occurred with 50% probability on subsequent
stimulus presentations. In different experiments, we began microstimulation
at either 50 or 100 ms after stimulus onset (always for a 50-ms period). The
effects of V1 microstimulation on MT responses did not qualitatively depend
on when the stimulation began, so we combined all of the data.

We saw evidence of electrical artifacts in our V1 but not our MT recordings. In
V1, we saw large artifacts despite fast-settle amplifiers and other hardware
technologies (Ripple) designed to minimize artifacts from electrical stimulation
during the microstimulation experiments. These artifacts were obvious because
they were huge in voltage and were time-locked to the stimulation pulses. For
that reason,weonly report findings fromdata collected inMT thatwere collected
using a separate front-end amplifier from the one that was used to stimulate.
Because we used separate (isolated) amplifiers and different electrodes, we were
able to record during stimulation in this separate area.We sawnoevidence of the
sort of artifacts that occurred in V1 in our MT recordings. We took several ad-
ditional steps to be sure that our MT results were not contaminated by more
subtle artifacts, and these steps have been described previously (8).

Data Analysis. All spike sorting was done offline manually using Offline Sorter
(v3.3.2; Plexon Inc.). We based our analyses on both single units and multiunit
clusters and use the term “unit” to refer to either. Using chronically implanted
microarrays (as we used for our V1 recordings), it is nearly impossible to tell
whether we recorded from the same single units or multiunit clusters on
subsequent days. However, the MT units were recorded on different elec-
trodes each day, so each MT unit or V1–MT pair was unique.

The analysis of the microstimulation data in Fig. 4 included spikes counted
during a 50-ms window during microstimulation, shifted 1 ms after micro-
stimulation onset. The analysis of the microstimulation data in Fig. 7B included
spikes counted during a 100-ms window after microstimulation, shifted 1 ms
after microstimulation stopped (see Fig. 3 for reference). Our other analyses of
neuronal data are based on spike counts from 30 to 230 ms after stimulus onset
for V1 and from 50 to 250 ms after stimulus onset for MT to account for the
visual latencies of neurons in both areas. Using identical windows for both areas
led to qualitatively similar results to those presented here.

We computed spike count correlations between pairs of units or between
the averaged activity of pools of V1 units and the MT unit using a standard
Pearson’s correlation coefficient for each stimulus condition separately. Be-
cause this measure is sensitive to outliers, we excluded stimulus presentations
on which either unit (or group of units) in the pair responded more than three
SDs differently than its mean (according to the convention in ref. 46). Stimulus
presentations where a microsaccade was detected anywhere between 10 ms
before until 10 ms after the stimulus was shown were excluded from analysis.
We identified microsaccades using a velocity detection algorithm (47).

Simulations. To assess the predicted changes in V1–MT correlations caused by
changes within V1, we simulated the responses of pools of V1 neurons (Fig. 5).
To begin, we calculated the mean and variance of the V1 pool during blocks of
trials in which the monkey directed attention to the stimulus inside the MT
receptive field that did not overlap the receptive fields of the V1 units in the
pool (e.g., to assess predicted correlations between the MT unit and the pool
of V1 neurons whose receptive fields overlap the preferred stimulus, we began
with responses in the attend-null condition). For each trial, we drew the re-
sponses of the pool from a Gaussian distribution with the same mean and
variance as the neurons in the pool.

We then simulated theeffects of attentiononV1neurons. Attention is known
to multiplicatively scale themean rates of neurons in visual cortex (17–19), so we
scaled the mean responses of neurons in the attended and unattended pools by
multiplying their responses by scaling factors k and 1/k, respectively (sampling
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values of k in an unphysiologically large range 1/32–32). Attention is also as-
sociated with changes in the variance (22) and covariance (8–16) of visual
neurons, both of which would affect the variance of the mean of the pool of
neurons. We therefore simulated these changes by scaling the variance of the
distributions of simulated responses of the attended and unattended pools by
scaling factors v and 1/v, respectively (sampling values of v in an unphysiologi-
cally large range 1/32–32; Fig. 5A).

To assess the predicted changes in V1–MT correlations caused by changes in
the weighting of attended V1 inputs to MT (Fig. 5B), we changed the pa-
rameter β in Eqs. 2 and 3 in the range 1/32–32.

Other than this manipulation of the parameter β in Fig. 5B, all of our sim-
ulations (including those in Fig. 4) were based on the fitted parameters of the
MT units we recorded concurrently with V1 responses. The median parameters

for the normalization model were: SP: 3.70.43; SN:0.43; α: 0.43; β: 1.96; and
σ: 0.72. The median parameters for the linear model were: SP: 1.74; SN: 0.06;
and β: 1.29 (the linear model does not have parameters α or σ).
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