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Each of the large number of psychophysical and physiologi-
cal studies of visual attention show that attention profoundly 
affects individuals’ perceptual abilities and also modulates the 

responses of populations of neurons at every stage of visual and 
oculomotor processing1–4. Despite these often replicated obser-
vations, whether any of the observed neuronal modulations can 
account for the improvements in psychophysical performance is 
unknown. Two nonmutually exclusive hypotheses have dominated 
the literature (Fig. 1a): (1) that attention improves visual informa-
tion coding5–7; or (2) that it improves the efficiency with which 
visual information is read out by the premotor neurons involved in 
decision-making8–11. The studies used to support these hypotheses 
were limited by the available data and analysis methods, which pri-
marily involved the responses of single neurons or pairs of simul-
taneously recorded neurons in the same brain area. We evaluated 
these hypotheses using the responses of groups of simultaneously 
recorded neurons in multiple stages of visuomotor processing, psy-
chophysics and data analysis methods that leverage that unique 
combination. We recorded simultaneously from groups of neurons 
in the middle temporal area (MT or V5), which encodes motion 
information12,13, and the superior colliculus (SC), where neuronal 
responses are either visual, oculomotor or intermediate, contrib-
ute to gaze control14–16 and are involved in computing perceptual 
decisions17–19. When we analyzed the responses of single or pairs of 
neurons, we replicated previous observations, including the results 
from two of our previous studies, which focused on visual area V4 
in two different tasks with spatial attention components: (1) an 
orientation change detection task5; and (2) a contrast discrimina-
tion task6. However, constraining the analyses of our MT dataset 
or of both V4 datasets by the animals’ behavior and the simulta-
neous recordings from both areas made it clear that neither prior 
hypothesis constitutes a satisfying account of the observed atten-
tion-related improvements in performance.

Our results suggest that on the timescale of perceptual decisions, 
across two visual areas and during both detection and discrimina-
tion tasks, spatial attention does not act primarily by improving 

information coding or by changing the way visual information is 
read out. Instead, the long-observed attention-related changes in 
the responses of visual cortical neurons account for perceptual 
improvements, but they do so by reshaping the representation of 
attended stimuli such that they more effectively drive downstream 
neurons and guide behavior (Fig. 1b). Our study provides a frame-
work for leveraging multi-neuron, multi-area recordings and con-
trolled psychophysics to study how neuronal networks mediate 
flexible behavior in many systems, timescales and tasks.

Results
We compared evidence for and against two hypothesized attention 
mechanisms using neuronal responses collected while two rhesus 
monkeys performed the widely studied motion direction change 
detection task in Fig. 1c (refs. 5,9,20–22), and then compared the results 
to recordings while monkeys performed a similar orientation 
change detection task5 and a contrast discrimination task6. As in the 
two previously published datasets, the animals’ performance in our 
new experiment was greatly affected (Fig. 1d) by a cue instructing 
them to shift spatial attention between a stimulus within the same or 
opposite hemifield as the joint receptive fields of several dozen neu-
rons that were recorded on multielectrode probes in MT (Fig. 1e,  
red points) and SC (blue points). MT and SC represent different 
stages of perceptual decision-making and therefore provide the 
opportunity to evaluate each hypothesized attention mechanism. 
MT contributes to motion perception12,13. SC is thought to play 
many roles in visually guided tasks including gaze control14–16, deci-
sion-making17–19 and attention4.

Population recordings replicate previously observed effects of 
attention. The two predominant attention hypotheses make differ-
ent predictions about how attention should affect MT and SC in 
our task. The first (information coding) hypothesis predicts that 
attention improves the motion direction information encoded in 
MT. The second (readout) hypothesis posits that attention changes  
the way that stimulus information is read out of MT to influence 
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downstream responses and ultimately behavior. Our strategy was to 
show that our data are consistent with those in past studies by rep-
licating the results that have been used as evidence to support each 
hypothesis and then evaluate each hypothesis using analyses that 
leverage our simultaneous measurements from the animals’ behav-
ior and multi-neuron, multi-area recordings.

Past studies have evaluated these hypotheses by analyzing the 
responses of individual neurons or pairs of neurons, which typi-
cally lack the statistical power to reveal a strong link to behavior. 
Using our dataset, we replicated the observations that have been 
used as evidence in favor of each hypothesis. Consistent with pre-
vious studies evaluating the information coding hypothesis2,3,23, 
we found that attention increased the trial-averaged responses of 
neurons in both MT and SC (Supplementary Fig. 1a,b) and that 
attention decreased the extent to which the trial-to-trial fluctua-
tions in neuronal responses to repeated presentations of the same 
stimulus are shared between pairs of MT neurons5,7,21 (quantified as 

the average spike count or noise correlation (rSC)24; Supplementary 
Fig. 1c). Consistent with studies evaluating the readout hypoth-
esis, attention-related increases correlated variability between the 
two areas9,10,25 (Supplementary Fig. 1c). These attention-related 
increases were weakly dependent on the visual responsivity of SC 
neurons (Supplementary Fig. 2).

The observed increase in correlations between areas suggests 
that attention-related effects are not simply due to global reduc-
tions in slow fluctuations, which has recently been hypothesized to 
explain attention-related correlation decreases within a single brain 
area26,27 (Supplementary Fig. 3). On the face of it, this hypothesis 
does not seem to account for the spatially specific effects of spa-
tial attention (for example, correlated variability increases in one 
hemisphere while decreasing in the other, even when neurons 
in the two hemispheres are simultaneously recorded5), mean-
ing that reductions in the variability of global cognitive processes 
like arousal and motivation probably do not account for the  
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Fig. 1 | Hypotheses and methods. a, Schematics describing the predominant hypotheses about links between attention, visual cortical activity and 
behavior. The left plot depicts the population responses recorded from MT to two visual stimuli plotted along two dimensions in population response 
space (for example, the first two principal components; see Methods) and a readout dimension that represents the visual information communicated 
to neuronal populations involved in planning behavior during the uncued condition. The insets depict projections of the population responses onto the 
readout dimension. Hypothesis 1 is that the MT representations of the two stimuli become more easily distinguishable (for example, by separating 
the distributions of responses to the two stimuli). In this scenario, the distributions of projections along even a suboptimal readout axis may be more 
separable. Hypothesis 2 suggests that attention changes the way visual information is read out from MT such that projections of MT population responses 
to the two stimuli onto the readout dimension are more separable. b, Our new hypothesis: attention reshapes population responses so they are better 
aligned with relatively static readout dimensions. This alignment could be a direct result of widely observed attention-related changes in firing rates and 
response variability. c, Direction change detection task with cued attention. The drifting Gabor stimuli before the change were identical on every trial 
within an experimental session and can be thought of as stimulus A, while the changed stimulus can be thought of as stimulus B in a. d, Psychometric 
curves from two example sessions (monkey ST, top; monkey HO, bottom) with best-fitting Weibull functions. Attention improved detection of median 
difficulty trials by 25% on average across all experiments (cued 76.5% detected across sessions, uncued 51.8% detected; n = 15 sessions, two-tailed 
Wilcoxon signed-rank test, P = 1.8 × 10−4). e, Receptive field centers of recorded units from the same example session as in the top plot in d. The dots 
represent the receptive field center (red, MT; blue, SC). The circle represents the size and location of the median receptive field from each area.
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attention-related changes in visual cortex. In addition to the obser-
vation that attention has opposite effects on noise correlations 
between pairs of neurons in the same or different areas, we found 
that attention has opposite effects on the local dynamics of the pop-
ulation responses within MT or SC as it does on the interactions 
between the two areas (Supplementary Fig. 3c,d and Supplementary 
Fig. 1c). These results are in conflict with the idea that the attention-
related decrease in covariability within each area is a by-product of a 
decrease in uncontrolled fluctuations in internal states because such 
a decrease should, presumably, be brain-wide.

Neuronal population decoding methods provide incomplete 
support for the information coding or readout hypotheses. We 
reasoned that analyzing the relationship between populations of 
simultaneously recorded neurons in multiple brain areas with the 
animals’ behavior would provide insight into the relative impor-
tance of each hypothesized mechanism. To this end, we determined 
whether attention affects the amount of stimulus information that 
can be decoded from the population of MT neurons using cross-val-
idated linear decoders that are optimized to (1) dissociate between 
the original and changed stimuli (‘stimulus’ decoder in Fig. 2),  
(2) predict the animals’ choices (whether or not they made an eye 
movement in response to change stimuli; ‘choice’ decoder), or (3) 
predict the activity of the population of SC neurons we recorded 

(using responses to the original stimulus; ‘SC’ decoder). These 
decoders were always constructed using data from trials with the 
intermediate change amount (see Fig. 1d).

The information coding hypothesis posits that attention 
improves the stimulus information that could be gleaned by an 
optimal stimulus decoder, but our data provided only weak sup-
port for this idea. Attention did not significantly affect the perfor-
mance of an optimal decoder in our dataset, even when we used a 
decoder optimized separately for each attention condition (Fig. 3a,  
left bars). Recent theoretical work has demonstrated that high-
dimensional decoders can ignore pairwise correlations that are 
orthogonal to the decoding axis and that correlations are more 
likely to be orthogonal to this axis in larger populations28–30. This 
suggests that the effects of attention on the stimulus information 
that can be decoded from small neuronal populations like the ones 
we recorded are probably even more minimal for larger popula-
tions, making it improbable that attention-related improvements in 
information coding account for the robust improvements in behav-
ioral performance that we observed.

The readout hypothesis posits that attention changes the impor-
tance of the attended stimulus in guiding behavior by changing the 
way its representation is read out by the neurons involved in com-
puting decisions. Therefore, this hypothesis posits that attention 
should change the weights relating MT responses to either behavior  
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or SC responses. We found that attention had larger effects on the 
stimulus information that is related to the animals’ choices on indi-
vidual trials (Fig. 3a, middle bars) or that is shared with the SC  
(Fig. 3a, right bars) than it did on the stimulus decoder. However, 
this difference could arise from either a weight change (Fig. 1a) or a 
change within MT that results in more stimulus-related visual infor-
mation being projected onto a static readout dimension (Fig. 1b).

A new hypothesis: attention reshapes sensory activity so that 
it more effectively guides decisions. Our data do not support 
the hypothesis that attention changes weights relating MT to SC 
responses or behavior. Because the responses of MT neurons are 
correlated and because the behavioral readout is binary, the weights 
obtained by each decoder are nonunique, making it impossible to 
identify weight changes by analyzing the weights themselves23,31. 
However, we can infer their stability by measuring the stimu-
lus information gleaned by each decoder using weights from the 
opposite attention condition from which they were calculated (see 
Methods). Both the choice and SC decoders gleaned more stimulus 
information from MT responses in the attended than unattended 
condition when we used the weights computed in the opposite 
attention condition (Fig. 3b,c). Together, these neuronal population 
analyses that use the animals’ behavior and the activity of down-
stream neurons to assess the hypothesized attention mechanisms 
reveal that neither the information coding nor the readout hypoth-
esis provide a satisfactory account of the large observed attention-
related behavioral improvement.

Our observations suggest that in MT neurons recorded while 
monkeys are performing a change detection task, attention acts 
primarily by changing the visual information that is used to guide 
behavior using relatively fixed readout weights. To investigate the 
generality of these observations to different visual areas and differ-
ent tasks, we tested these hypotheses using two additional datasets. 
In the first dataset, monkeys performed an orientation change detec-
tion task similar to the direction change detection task described 
in this study while we recorded from populations of V4 neurons5. 
Similar to our results in MT, we found that attention had larger 
effects on the stimulus information that is related to the animals’ 
choices (choice decoder; Fig. 4a) than it did on the stimulus infor-
mation that could be gleaned using an optimal (stimulus) decoder 
(Fig. 4b). As in our MT dataset (Fig. 3b), the results from this data-
set suggest that attention typically reshapes V4 responses to align 
with relatively fixed readout mechanisms: decoding performance 
was typically better using the V4 responses from the cued condition 
and the choice decoder weights from the uncued condition (y axis) 

than using the V4 responses from the uncued condition and the 
choice decoder weights from the cued condition.

In the second new dataset, we searched for attention-related 
changes in information coding in V4 neurons while monkeys 
performed a discrimination task6. These data provide a particu-
larly important test of the information coding hypothesis because 
unlike in the change detection task where attention has fairly uni-
form effects on V4 and MT neurons (increasing rates and decreas-
ing noise correlations), we showed that in our discrimination task, 
attention can flexibly increase or decrease noise correlations in a 
way that is broadly consistent with improving information coding. 
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Fig. 3 | effects of attention on the stimulus information that can be 
decoded from small populations of Mt neurons. a, Ability of a cross-
validated linear decoder to distinguish the original from changed stimuli 
(intermediate change amount) for each decoder. The error bars represent 
the s.e.m.; the gray lines are the individual sessions. The effect of attention 
was significant for the choice and SC decoders (n = 15 sessions; two-
tailed paired t-tests, P = 0.019 and P = 0.048, respectively) but not for the 
stimulus decoder (n = 15 sessions; two-tailed paired t-test, P = 0.42). The 
effects of attention on the choice and SC decoders were greater than for 
the stimulus decoder (n = 15 sessions; two-tailed paired t-tests, P = 0.023 
and P = 0.030, respectively), but not significantly different from each other 
(n = 15 sessions; two-tailed paired t-test, P = 0.21). b, Weight-swapping 
analysis demonstrates that decoding performance was typically better 
using MT responses from the cued condition and the choice decoder 
weights from the uncued condition (y axis) than using MT responses 
from the uncued condition and the choice decoder weights from the cued 
condition (x axis; n = 15 sessions; two-tailed paired t-test, P = 0.005).  
c, Same as b, using the weights from the SC decoder (n = 15 sessions;  
two-tailed paired t-test, P = 0.012).
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Despite these findings, the results of our decoding analyses were 
similar for the detection and discrimination tasks, meaning that we 
did not find strong evidence that attention improves the amount 
of stimulus information that can be optimally extracted from a 
population of visual neurons in either task (Fig. 4c). Together, these 
results provide evidence that in multiple visual areas and visually 
guided tasks, attention acts primarily to reshape population activity 
so that more stimulus information is used to guide behavior using 
relatively fixed decision mechanisms.

Our data support the hypothesis that attention reshapes the rep-
resentation of attended stimuli to more effectively guide behavior 
(Fig. 1b). In this scenario, the critical changes are in visual cortex. 
However, this reshaping does not result in a large improvement in 
the stimulus information that can be gleaned by an optimal stimu-
lus decoder. Instead, the modulated neuronal activity in MT better 
aligns with readout dimensions using relatively static weights.

How could a reshaping of the representation of an attended stim-
ulus be implemented? The simplest mechanism would make use of 
the often observed signatures of attention such as changes in firing 
rate gain2,3,23 or pairwise noise correlations5–7,9,20–22,32–37. We investi-
gated the possibility that these simple response changes can account 
for the attention-related improvement in the stimulus information 
decoded using both the choice and SC decoders in two stages. First, 
to verify the prediction of the weight-swapping analyses (Fig. 3b,c), 
we constructed a single choice decoder for both attention condi-
tions (Fig. 5a) and determined that it captured the attention-related 
improvement in decoded stimulus information (compare the blue 
and yellow bars in Fig. 5b). Second, we used those same weights 
to decode stimulus information from population responses con-
structed using the mean rates from the uncued condition and the 
residuals from the cued condition (green bar). We found that sim-
ply using residuals from the cued condition, which incorporate  
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response variability that is private to each neuron and also shared 
between neurons, was enough to completely account for the 
attention-related improvement in decoded stimulus information  

in both the choice (Fig. 5b) and SC decoders (Fig. 5c). These com-
mon decoders captured the attention-related improvement in 
decoded stimulus information, and using residuals from the cued 
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uncued condition and the residuals from the cued condition (n = 15 sessions; two-tailed paired t-test, P = 0.48).
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condition completely accounted for the attention-related improve-
ment in decoded stimulus information.

Discussion
We used multi-neuron, multi-area recordings and psychophysics 
in detection and discrimination tasks to test two common previ-
ous hypotheses and a different hypothesis about the relationship 
between attention-related changes in perception and neuronal 
responses on the timescale of perceptual decisions. In contrast with 
the hypotheses motivating most of the extensive literature concern-
ing the neuronal basis of attention, our data are most consistent 
with the hypothesis that attention reshapes population activity so 
that information about the attended stimulus is read out to guide 
behavior. Our conclusions are based on comparing the visual infor-
mation that can be gleaned from decoders optimized for the stimu-
lus, the animals’ choices and the activity of groups of visuomotor 
neurons. These results support the idea that behavioral flexibility 
is mediated by reshaping the representation of visual stimuli rather 
than improvements in information coding, which may be impos-
sible given the immense amount of sensory information encoded 
in the brains of even anesthetized animals30 or in the responses of 
single neurons13, or by changing the readout, which may be difficult 
to flexibly alter on the comparatively rapid timescale on which indi-
viduals can behaviorally shift attention38.

The idea of reshaping sensory information to better align with 
static readout mechanisms at first sounds as though it would require 
much more exotic mechanisms than the other hypothesized atten-
tional mechanisms. However, we showed that commonly observed 
effects of attention on neuronal response variability were sufficient 
to reshape the representation of attended stimuli so that they more 
effectively influence the activity of downstream neurons and behav-
ior (Fig. 5b,c). Changing covariability may require a simpler mecha-
nism than changing information coding or synaptic weights. We 
showed recently in a model that the covariability of a population of 
neurons can be readily changed by altering the balance of inhibition 
to excitation39,40.

Although many studies are based on the implicit assumption 
that one or both of the information coding and communication 
hypotheses are true, several recent studies have failed to support the 
strongest versions of these hypotheses and our reshaping hypothesis 
unifies these results. Mante et al.41 found the presence of both task-
relevant and task-irrelevant information in the prefrontal cortex, 
suggesting that the task, or attention-related gating of information 
does not occur in earlier stages of processing, such as in visual cor-
tex. This observation raises the question of why sensory responses 
are modulated if neurons near the end stages of processing in the 
prefrontal cortex still encode task-irrelevant information. To this 
point, Krauzlis et  al.42 suggested that attention-related changes in 
the sensory cortex may arise as a by-product of the process that 
interprets these signals. Further, a variety of experimental condi-
tions that involve changing reward value43 or saccade planning44 
result in changes in sensory responses that suggest a dependence 
on how the animal will use the sensory information. The reshaping 
hypothesis we propose in this study is consistent with all of these 
findings, suggesting that sensory responses are modulated by the 
task such that the relevant information affects behavior and the 
irrelevant information is retained, perhaps for future actions or 
memory. Our findings suggest that this reshaping is achieved by 
changes to correlated variability early on during visual processing, 
not by changing readout weights.

The idea that changing correlated variability better aligns sen-
sory responses to a fixed readout is also consistent with our recent 
observation that in the change detection task, monkeys’ choices 
are well aligned with the axis in population space that explains the 
most correlated noise21. One exciting possibility is that the cor-
related variability axis represents the fixed readout dimension,  

perhaps because it is well positioned to decode the motion direc-
tion of the broad set of stimuli that animals encounter outside the 
limited environment of most laboratory tasks23. If so, reducing noise 
correlations and increasing firing rate gains would improve the 
stimulus information projected along that readout axis (following 
the intuitions in Averbeck et al.45).

While our results were broadly consistent across two tasks and 
two visual cortical areas, it is possible that attention uses different 
mechanisms in different tasks, brain areas or sensory modalities. 
In particular, it is possible that the mechanisms underlying change 
detection, which is an important component of natural vision, are 
different than other tasks or that the mechanisms differ by brain 
areas. Therefore, the observation that attention also does not change 
the amount of stimulus information that can be decoded from the 
visual cortex during a contrast discrimination task provides strong 
independent support for the generality of our findings. However, 
even if we happened on a special, albeit common, scenario using 
these two tasks, it is remarkable to observe a situation where the 
large attention-related change in behavioral performance can be 
accomplished without changing information coding or weights 
between areas. In contrast, theoretical models and machine learn-
ing techniques often accomplish flexibility in computation almost 
solely by changing weights46–49. Our results constitute an existence 
proof: an example of a situation where flexibility can be mediated by 
simple changes within the sensory cortex.

In the future, it will be interesting to use the same approach to 
determine whether similar mechanisms can account for behavioral 
changes associated with other cognitive processes (for example, task 
switching) that have been suggested to change the weights relating 
stimulus information to downstream neurons or behavior. Further, 
many neuropsychiatric disorders (including disorders of attention, 
autism spectrum disorder and schizophrenia) are thought to involve 
changes in the same computations thought to underlie attention50. 
An exciting possibility is that these changes might be identified and 
potential therapies evaluated in animal models using the combina-
tion of behavioral evaluation and multi-neuron, multi-area record-
ings that we described in this study.
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Methods
Animals. Two adult male rhesus monkeys (Macaca mulatta, 8 and 9 kg and 8 and 
6 years old, respectively) were the animals used to simultaneously record from MT 
and SC. All animal procedures were approved by the Institutional Animal Care and 
Use Committees of the University of Pittsburgh and Carnegie Mellon University.

We presented visual stimuli using custom software (written in MATLAB using 
the Psychophysics Toolbox (v. 3)51,52) on a cathode-ray tube monitor (calibrated to 
linearize intensity; 1,024 × 768 pixels; 120 Hz refresh rate) placed 54 cm from each 
animal. We monitored eye position using an infrared eye tracker (EyeLink 1000; 
SR Research) and recorded eye position and pupil diameter (1,000 samples s−1), 
neuronal responses (30,000 samples s−1) and the signal from a photodiode to align 
neuronal responses to stimulus presentation times (30,000 samples s−1) using 
hardware from Ripple.

Behavioral task. As described previously5, a trial began when the monkey fixated 
a small, central spot within a 1.25° per side square fixation window in the center 
of a video display while two peripheral full contrast, drifting Gabor stimuli (one 
overlapping the receptive fields of the recorded neurons, the other in the opposite 
visual hemifield) synchronously flashed on (for 200 ms) and off (for a randomized 
period between 200 and 400 ms) until, at a random, unsignaled time, the direction 
of one of the stimuli changed from that of the preceding stimulus (Fig. 1c). 
The monkey received a liquid reward for making a saccade to the stimulus that 
changed within 450 ms of its onset. Attention was cued (using instruction trials 
before each block) in blocks of 50–100 trials, and randomly alternated between 
blocks where attention was cued to either the left or right stimulus. In each block, 
the direction change occurred at the cued stimulus on 80% of trials, and at the 
uncued stimulus in 20% of trials (all uncued changes used either the middle or 
largest direction change; Fig. 1d). To encourage fixation on longer trials, catch 
trials, where no stimulus changed direction and monkeys were rewarded for 
maintaining fixation, were randomly intermixed throughout each block and made 
up approximately 12% of total trials. Psychometric data were fitted with Weibull 
functions. Before recording commenced, the monkeys were extensively trained to 
have stable thresholds across a range of spatial locations (3–6 months). Because 
we recorded from several dozen neurons simultaneously, we could not optimize 
the stimuli for all neurons. We made sure to position one Gabor stimulus in the 
joint receptive field of the recorded neurons in both areas and we made an effort 
to set the properties of the size (approximately 3–6 degrees of visual angle), speed 
(approximately 3–12 degrees of visual angle per second) and direction of the 
stimuli so that they drove as many MT units as possible. The direction of all of 
the stimuli before the direction change (termed original stimulus) was constant 
throughout a recording session and this direction was typically either the median 
or mode of the distribution of MT preferred directions from that session. The 
range of direction changes differed from session to session, was selected based 
on the animals’ training history and depended on stimulus properties such as 
eccentricity and size. A typical range of change amounts for both animals was  
1–35 degrees in log-spaced steps.

Electrophysiological recordings. Using linear 24-channel moveable probes 
(Plexon), we simultaneously recorded extracellular activity from direction-selective 
neurons in MT and neurons in SC that responded either visually, before a saccade 
or both. Before beginning the experiment, we searched for neurons in both areas 
that had overlapping spatial receptive fields (Fig. 1e) as determined by mapping 
with both drifting gratings and a delayed saccade task. The dataset consisted of a 
total of 306 responsive MT units and 345 responsive SC units total (36–58 units 
per session, mean 20 in MT, 24 in SC for monkey HO; 36–53 units per session, 
mean 21 in MT, 22 in SC for monkey ST) collected from the right hemisphere 
using moveable, linear 24-channel V-probes (Plexon; interelectrode spacing in 
MT = 50μm, SC = 100μm). We presented visual stimuli and tracked eye position 
as described previously9. The data presented are from 6 d of recording for monkey 
HO and 9 d of recording for monkey ST. Each day consisted of multiple blocks of 
the attention task (Fig. 1c; mean 1,015 trials for monkey HO, 745 for monkey ST) 
preceded by receptive field mapping using a delayed saccade task and direction 
tuning during passive fixation.

Data analysis. All spike sorting was done offline manually using Offline Sorter 
v3.3.5 (Plexon). We based our analyses on both single units and multiunit clusters 
and use the term ‘unit’ to refer to either. Neuronal analyses in Supplementary 
Figs. 1 and 2 used spike count responses between 50 and 250 ms after stimulus 
onset to account for visual latencies in the two areas. To remove response 
contamination from eye movements during change stimuli, data presented in the 
decoding analyses in Figs. 3 and 4 used shorter response windows. Responses 
to both original and changed stimuli were measured from 50 to 185 ms after 
stimulus onset for monkey HO and 50–220 ms for monkey ST. These times were 
selected based on the distribution of each animal’s reaction times with the goal 
of maximizing the number of trials that could be included in the analyses. Trials 
with reaction times that began during those windows were excluded. Using these 
shorter response windows did not qualitatively affect the measures of attention 
described in Supplementary Fig. 1. Attention still increased the firing rates of MT 
neurons (mean attention index = 0.034, median attention index = 0.034; n = 306 

units, two-tailed Wilcoxon signed-rank test, P = 1.2 × 10−17) and SC neurons (mean 
attention index = 0.071, median attention index = 0.05; n = 345 units, two-tailed 
Wilcoxon signed-rank test, P = 4.2 × 10−44) and decreased noise correlations within 
MT (n = 3,285 pairs, two-tailed Wilcoxon signed-rank test, P = 7.7 × 10−17). To 
minimize the impact of adaptation on our results, we did not analyze the first 
stimulus presentation in each trial. We only analyzed a recorded MT unit if its 
stimulus-driven firing rate was 10% higher than its firing rate as measured in the 
100 ms before the onset of the first stimulus. We only analyzed a recorded SC unit 
if its stimulus-driven firing rate was 10% higher than its firing rate as measured 
in the 100 ms before the onset of the first stimulus or if its response during a 
100 ms epoch before a saccade on hit (correct) trials to the contralateral side 
was 10% larger than that same baseline. Stimulus presentations during which a 
microsaccade was detected were excluded from the analyses9,53.

For the firing rate analyses in Supplementary Fig. 1a,b, attention indices were 
calculated using the average spike counts on the (original) stimulus presentation 
before correct detections of the intermediate change amount depending on 
whether attention was directed into or out of the receptive fields of the recorded 
neurons using the formula (attendin − attendout)/(attendin + attendout). For illustrative 
purposes, the significance of individual units was determined by a two-tailed 
paired t-test (P < 0.05).

Noise correlations. We defined the correlated variability of each pair of 
simultaneously recorded units (quantified as spike count correlation or rSC (ref. 24))  
as the Pearson correlation coefficient between the responses of the two units to 
repeated presentations of the same stimulus. This measure of rSC represents noise 
correlations rather than signal correlations because the responses used in this 
analysis were always to an identical visual stimulus. For Supplementary Fig. 1c, 
we included responses from stimulus presentations 2 through 10 from trials that 
ended with either a hit, miss or correct catch trial and that were immediately 
followed by the maintenance of fixation and continuation of the trial (that 
is, stimulus presentations where the behavioral response on the subsequent 
stimulus presentation was not a saccade). We z-scored responses as a function 
of the stimulus presentation number in each trial and then pooled the data 
across stimulus presentations before calculating noise correlations. The results 
did not qualitatively change if we did not perform this z-score procedure. For 
Supplementary Fig. 1d, we included data from all stimulus presentations before 
the change stimulus (except the first) and sorted them depending on what the 
behavioral outcome was on the subsequent stimulus presentation. Pairs of units 
that were recorded on the same electrode were not included in the correlation 
analyses. The data presented in Supplementary Fig. 1c consisted of 3,285 MT pairs, 
3,948 SC pairs and 6,934 between-area pairs.

Decoding. We focused our decoding analyses (Figs. 2, 3 and 5) on trials where 
the third largest (middle) direction change occurred because changes of that 
magnitude occurred in both attention conditions. This approach also serves to 
linearize the problem by attempting to classify between one of two directions of 
motion. Therefore, we restricted our decoding approach to using linear methods. 
We performed the decoding analyses using responses from trials that were either 
hits (correct detection) or misses (maintained fixation after change in stimulus). 
All of the datasets contained at least ten trials in each attention condition and at 
least three hits and three misses in each condition. We did not include false alarms 
in the analyses because there were too few (and they were too inconsistent across 
recording sessions) to handle appropriately.

We used the decoding strategy schematized in Fig. 2. We began by constructing 
a matrix of MT responses for each attention condition: ‘MT responses’ (number 
of MT neurons by 2 × number of trials matrix of MT responses to the stimuli 
before the direction change and the changed stimulus on the relevant trials). The 
stimulus decoder was performed using two matrices for each attention condition: 
all of ‘middle area temporal responses’ (number of MT neurons by 2 × number of 
trials matrix of MT responses to the stimuli before the direction change and the 
changed stimulus on the relevant trials) and ‘motion direction’ (a 1 by 2 × number 
of trials vector of zeros for the stimulus before the change, referred to as ‘original’, 
and ones for the changed stimulus, referred to as ‘change’). The choice decoder 
was performed using two matrices for each attention condition: the responses 
during change stimulus presentations from ‘MT responses’ (number of MT 
neurons by 1 × number of trials matrix of MT responses to the change stimulus 
on the relevant trials) and ‘choice’ (a 1 by 1 × number of trials vector of zeros for 
change stimulus presentations where the animal did not make an eye movement, 
referred to as ‘no saccade’, and ones when the animal made an eye movement, 
referred to as ‘saccade’). The SC decoder was performed using two matrices for 
each attention condition: the responses during original stimulus presentations ‘MT 
responses’ (number of MT neurons by 1 × number of trials matrix of MT responses 
to the original stimulus on the relevant trials) and ‘SC responses’ (number of SC 
neurons by 1 × number of trials matrix of SC responses to the original stimuli on 
the relevant trials). We refer to this final decoder as ‘SC decoder’ but the weights 
are defined with no directionality. We have simply identified the weights that best 
relate the activity between the two areas. We used only responses to the original 
stimulus for the SC decoder because of the strong presaccadic responses present 
during the changed stimuli.
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We cross-validated by holding out the two stimulus presentations from ‘MT 
responses’ (for the original and changed stimuli) from one trial at a time to 
perform the classification of motion direction. To reduce the number of weights 
we needed to fit and therefore improve our confidence in the weights we fitted, 
we performed principal component analysis on the MT and SC responses to 
find the first 10 principal components in each area. The choice of number of 
vectors did not qualitatively affect the results in the range of 4–15 vectors. We 
then performed linear regression to find the weight vectors (for the stimulus and 
choice decoders) or weight matrices (for the SC decoder) that related projections 
along the first ten MT principal components plus a vector of ones to ‘motion 
direction’, ‘choice’ or projections along the first ten SC principal components in 
each attention condition.

We assessed the stimulus information in each decoder (Fig. 3) by multiplying 
the projections of MT responses to the original and changed stimuli from the 
held-out trial by the fitted weights, either determining whether those weighted 
sums correctly classified the stimuli as original or changed (stimulus and choice 
decoders) or whether a linear classifier correctly classified those stimulus 
presentations on the basis of the predicted SC responses (SC decoder). The 
performance of the decoder is defined as the area under the receiver operating 
characteristic curve comparing the distributions of weighted average responses to 
each stimulus using the weights constructed for each decoder.

The critical aspect of the decoding analysis is that we ask how much stimulus 
information is contained in each different subset of MT activity. The stimulus (or 
optimal) decoder will perform best because it was designed specifically to ask this 
question. The choice and SC decoders identify different subspaces of MT activity 
and then ask how much stimulus information is contained in those subspaces. 
These decoders, by definition, will perform worse than the stimulus decoder, but 
they are asking the same question.

To assess the stability of the weights for each decoder in the two attention 
conditions, we assessed the stimulus information gleaned by each decoder using 
the sensory responses from one attention condition and the weights calculated 
from the other (Figs. 3 and 4). Because the responses of visual neurons are 
correlated and because our behavioral response is binary, the weights found with 
our linear decoding methods are nonunique23,31. Therefore, it is not informative to 
make direct comparisons of the weights across conditions. Instead, we borrowed 
the spirit of the analyses in a recent study31 and compared the stimulus information 
that could be gleaned using each set of weights in each attention condition. In 
general, the choice and SC decoders performed better with weights computed from 
the same attention condition, even though we cross-validated these analyses. (This 
effect could be attributed to non-stationarities in the recordings or the monkey’s 
behavior.) The critical comparison is the performance of the decoders using the 
sensory responses from one attention condition and the weights from the other 
(Figs. 3 and 4).

For the decoding analysis in Fig. 5, we took a similar approach to the 
previously described choice and SC decoders, except that we combined data from 
both the cued and uncued conditions to calculate the decoding weights. We then 
decomposed the population responses to each stimulus in each attention condition 
into mean responses and residuals (R = M + S, where R is the number of neurons 
by the number of trials matrix of spike count responses to one stimulus in one 
attention condition, M is a matrix of mean responses for each neuron and S is the 

matrix of residuals). We tested the hypothesis that attention-related changes in 
the residuals account for the improvement in stimulus information used to guide 
behavior by decoding stimulus information from responses created by using the 
mean responses from the uncued condition and residuals from the cued condition.

The analyses of the V4 data from the change detection task (Fig. 4a,b) 
were carried out in the identical manner to MT data described earlier. This 
dataset consisted of multi-neuron recordings using Utah arrays placed in both 
hemispheres of V4 during 37 experimental sessions in two animals, the details 
of which are described in Cohen and Maunsell5. Data from each hemisphere 
was treated separately in the decoding analyses, so each session contributes 
two data points for each analysis (gray lines, Fig. 4a). The details of the contrast 
discrimination task used in Fig. 4c required a different form of the stimulus 
decoder. This dataset consisted of multi-neuron recordings using Utah arrays 
placed in both hemispheres of V4 during 17 experimental sessions in two animals. 
The details of this experiment have been described previously6. Briefly, two 
monkeys judged which of two stimuli in a pair was higher contrast by making a 
saccade to a target representing its choice. Attention toward one pair of stimuli 
or the other was changed in blocks. The stimulus decoder (Fig. 4c) compares 
performance using V4 responses to distinguish between a given stimulus 
configuration and its opposite configuration in the attended and unattended 
conditions. As in the other V4 dataset, data from each hemisphere were  
treated separately.

Statistics. Paired tests, either two-tailed t-tests or nonparametric Wilcoxon signed-
rank tests, were employed for all statistical analyses. Where t-tests were used, the 
data distribution was assumed to be normal but this was not formally tested. No 
statistical methods were used to predetermine sample sizes; however, our sample 
sizes are similar to those reported in previous publications6,9. There was no way 
to perform data collection and analysis blind to the conditions of the experiments 
because our data were not grouped. Please see the Nature Research Reporting 
Summary for additional information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.

Code availability
The custom MATLAB code is available from the authors upon reasonable request.
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Sample size No statistical methods were used to predetermine sample sizes but our sample sizes are similar to those reported in previous publications 
(Cohen and Maunsell, 2009). In the newly described dataset, we recorded from 306 MT units and 345 SC 
units across 15 sessions from two monkeys.

Data exclusions No data were excluded in the initial analyses.

Replication Monkeys were trained and tested over a period of more than a year and produced consistent behavioral results. We replicated many of the 
previous observations of how attention affects the responses of MT and SC neurons and our results were reproducible across sessions.
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Laboratory animals Two male rhesus monkeys (Macaca mulatta) weighing 8-9 kg (8 and 6 years old, respectively) were used.

Wild animals Wild animals were not used in this study.

Field-collected samples Field-collected samples were not used in this study.
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Carnegie Mellon University.
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