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SUMMARY
Visual attention allows observers to change the influence of different parts of a visual scene on their behavior,
suggesting that information can be flexibly shared between visual cortex and neurons involved in decision
making. We investigated the neural substrate of flexible information routing by analyzing the activity of pop-
ulations of visual neurons in themedial temporal area (MT) and oculo-motor neurons in the superior colliculus
(SC) while rhesusmonkeys switched spatial attention. We demonstrated that attention increases the efficacy
of visuomotor communication: trial-to-trial variability in SC population activity could be better predicted by
the activity of the MT population (and vice versa) when attention was directed toward their joint receptive
fields. Surprisingly, this improvement in prediction was not explained by changes in the dimensionality of
the shared subspace or in the magnitude of local or shared pairwise noise correlations. These results lay a
foundation for future theoretical and experimental studies into how visual attention can flexibly change infor-
mation flow between sensory and decision neurons.
INTRODUCTION

Perhaps the most impressive hallmark of the nervous system is

its flexibility. We effortlessly modulate the extent to which we

rely on particular sensory information in different contexts. Visual

attention dramatically affects perception and a wide variety of

measures of neural activity in essentially every visual and visuo-

motor brain area (for reviews, see Maunsell1 and Moore and

Zirnsak2). Attention flexibly modulates signatures of neuronal ac-

tivity, including trial-averaged firing rates,1,3,4 shared variability

between pairs of neurons in the same5–20 and different brain

areas,15,21–23 interdependence of neuronal populations on a

range of timescales,15,24–43 and the dimensionality of population

activity within each brain area.44–46

Thebehavioral effectsof attentionmake it clear that visual infor-

mation can be flexibly routed: a stimulus can either guide or be

unrelated to a perceptual decision, depending on the task condi-

tion.1,47–49 In the visual system, neurons in eacharea sendprojec-

tions to a variety of different sensory, association, and motor

areas, and only a small proportion of neuronal population activity

is shared between even highly connected brain areas.50 Recent

work used correlativemethods to identify a functional ‘‘communi-

cation subspace,’’ which consists of the dimensions of neuronal

population space in which trial-to-trial variability is shared be-

tween areas.50,51 We similarly adopt the term ‘‘communication’’

to refer to functional communication (i.e., shared trial-to-trial vari-

ability in responses to the same visual stimulus).

An exciting possibility is that modulations in the shape or the

constitution of this subspace could be a substrate for flexible,
Current Bi
attention-dependent routing of sensory information. Compared

to its behavioral effects, attention has remarkablymodest effects

on the amount of visual information encoded in visual cortex.14

Instantiating task or attentional flexibility via flexible routing

rather than information coding could allow the brain to retain

irrelevant visual information for future behavior or memory while

the most relevant visual information guides behavior.

We considered three potential, non-mutually exclusive means

by which information might be flexibly shared between visual

cortex and premotor neurons involved in decisionmaking. Atten-

tion might modulate information flow between areas by (1)

changing the way visual or task information is represented in a

local population, (2) changing the communication subspace it-

self, and/or (3) changing the efficacy of information transfer

(Figure 1D).

Our strategy was to analyze functional communication be-

tween neuronal populations in visual and premotor areas while

animals switched attention toward or away from their joint recep-

tive fields. We recorded simultaneously from dozens of visual

neurons in the medial temporal area (MT) and oculo-motor neu-

rons in the superior colliculus (SC) with overlapping receptive

fields while rhesus monkeys performed a task in which they

switched spatial attention, alternatingly biasing decisions toward

or away from the stimulus in the joint receptive fields of the re-

corded neurons. We used recently published methods for

analyzing functional relationships between populations of neu-

rons by assessing the dimensionality of shared variability and

the extent to which the activity of one population could be pre-

dicted by the other.50,51 We focused on trial-to-trial fluctuations
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Figure 1. Behavioral task, recording sites,

receptive fields, and schematic of hypo-

theses

(A) Schematic of the motion direction change

detection task. Themonkeys were cued in blocks of

trials to expect changes inmotion direction at one of

two spatial locations (cue was 80% valid). The

monkey started the trial by fixating a central spot.

Two small Gabor stimuli synchronously flashed on

for 200 ms and off for a randomized period of 200–

400ms. One of the stimuli was positioned inside the

joint receptive fields of the MT and SC neurons, and

the other was placed in the opposite hemifield. Both

stimuli moved in a direction thatwas chosen to drive

the MT population well. After a randomized number

of stimulus presentations (between 2 and 13), the

directionofoneof the stimuli changed.Themonkeys

were rewarded formaking a saccade to thedirection

change in either location. We analyzed neuronal re-

sponses to all identical stimulus presentations

except the first to minimize the effect of adaptation.

(B) Illustration of recording locations. Populations

of MT and SC neurons were recorded with linear

24-channel moveable probes from the right

hemisphere of two monkeys as they were doing

the behavioral task described in (A).

(C) Receptive field locations of recorded units from

an example recording session. The dots represent

the receptive field centers of 28 MT (red) and

26 SC (blue) units. The circles represent the size

and location of the median receptive field from

each area.

(D) Schematics describing the hypotheses about attention-related changes in information flow between two areas. Each icon depicts the response space of the

source area (the responses of the first n neurons or principal components, for instance) and orange and blue surfaces that represent two subspaces for the

private or shared fluctuations in neural activity, respectively. The two rows of icons represent the attended and unattended conditions (when attention was

directed toward or away from the receptive fields of the recorded neurons), and each column describes the expected result of each of the following hypotheses.

Left: attention could alter the dimensionality of the private, shared, or both subspaces. If attention only modified local representations, then the number of private

dimensions that explain the local neural fluctuations would change. Middle: alternatively, attention could modulate information flow by enhancing or diminishing

the extent to which neural activity in a target population tracks the neural activity of its source. If attention acted via this mechanism locally, then prediction would

improve in private dimensions. Right: if attention modulated functional communication by modulating information flow across areas, then prediction would

improve in shared dimensions.
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in responses to the same visual stimulus because these are

related to functional connectivity rather than simply reflecting

tuning for similar stimuli (for review, see Cohen and Kohn52 and

Umakantha et al.53). Furthermore, fluctuations on the timescale

of single stimulus presentations13,54 or longer44 have been

shown to be correlated with choice behavior.

The three hypothesized ways that attention could change in-

formation routing (Figure 1D) make different predictions about

how attention changes the relationship between trial-to-trial fluc-

tuations in MT and the SC. The first hypothesis, that attention

changes the local representation of visual or premotor informa-

tion, suggests that attention should change the dimensionality

and/or information content of the representation within an

area. The second hypothesis, that attention changes the

communication subspace, predicts that attention changes the

dimensionality of the subspace and/or the identity of the dimen-

sions it includes. Either of these changes could affect information

flow: increasing or decreasing the number of shared dimensions

could widen or restrict shared information, while changing the

identity of the shared dimensions could change the nature of

the shared information. The third hypothesis, that attention im-

proves the efficacy of functional communication between visual
5300 Current Biology 31, 5299–5313, December 6, 2021
and premotor neurons, predicts that attention enhances the

extent to which we can predict the responses of neurons in

one area from neuronal responses in the other area.

We found strong evidence for our third hypothesis. Trial-to-

trial variability of the population of SC neurons was better

predicted by the activity of MT neurons (and vice versa) when

attention was directed inside their joint receptive fields. This

enhanced functional communication between areas could not

be explained by increases or decreases in the raw magnitude

of private or shared pairwise noise variability or a change in the

number of private or shared dimensions of neuronal population

activity.

This enhanced functional communication was not restricted to

interactions between visual and premotor neurons. The effects

of attention on functional communication were similar between

MT and visual or motor neurons in the SC and in an independent

dataset of simultaneously recorded neurons in primary visual

cortex (V1) and in MT. Even though the attention-related change

in pairwise correlations and response dimensionality within V1

was small compared to MT or SC, attention significantly

enhanced our ability to predict the responses of single MT neu-

rons from population activity in V1.
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Our study provides a blueprint for combining behavioral para-

digms that vary cognitive processes with dimensionality reduc-

tion and regression analyses to study how information can be

flexibly routed in the nervous system. These results are the first

demonstration of how attention affects the activity of distinct

but connected populations of neurons in a way that affects the

functional interactions between visual and premotor neurons.

They suggest a set of possible mechanisms (see Discussion)

by which cognitive processes can affect perceptual decision

making in ways that are independent of changes to the local

neuronal representations.

RESULTS

We compared evidence consistent with several potential mech-

anisms for flexible routing of information. We chose a widely

studied cued direction change detection task to study the

behavioral effects of attention on visual perception and three

brain regions that are known to contribute to motion perception

and visually guided decision making—primary visual cortex

(V1), the MT, and the SC. Rhesus monkeys performed the mo-

tion change detection task described in Figure 1A. Briefly, after

the monkey fixated a central spot, two peripheral, full-contrast,

drifting Gabor stimuli synchronously flashed on (for 200 ms)

and off (for a randomized period between 200 and 400 ms) un-

til, at a random, unsignaled time, the direction of one of the

stimuli changed from that of the preceding stimuli. The monkey

received a liquid reward for directing a saccade to the stimulus

that changed within 450 ms of its onset. Using instruction trials

prior to each block, attention was cued in blocks between each

of the visual stimuli. While rhesus monkeys performed the task

(Figure 1A), we recorded simultaneously from either dozens of

neurons in MT and SC (Figure 1B) with overlapping receptive

fields (RFs) (Figure 1C; different aspects of these data were

previously reported in Ruff and Cohen14) or from several dozen

neurons in V1 and a single MT neuron (Figure 7; different as-

pects of these data were previously reported in Ruff and Co-

hen15,55). This stimulus was placed either inside the overlapping

receptive fields of the recorded neurons or in the opposite

hemifield (Figure 1C). Throughout this manuscript, ‘‘attend in’’

refers to the trials where attention was directed toward the joint

RFs and ‘‘attend out’’ refers to trials where attention was

directed to the opposite hemifield. The monkey was rewarded

for making a saccade to the location of the direction change,

which occurred at a random and unsignaled time. The ability

of the animal to detect the median difficulty changes in grating

direction is enhanced by �25% on average across sessions

when attention was directed to the location of the change

(cued 76.5% detected; uncued 51.8% detected).14 We

analyzed the spike counts of each visually responsive multi-

unit recorded from MT and SC during presentations of identical

Gabor stimuli before the direction change (excluding the first

presentation in each trial to remove adaptation effects). We

also analyzed spike counts of each SC unit with elevated firing

rates before saccade onset to the contralateral visual field. In

the V1-MT dataset, we tested our hypotheses on the responses

of groups of V1 neurons whose receptive fields overlapped

either of two small stimuli, both of which were inside the RF

of the MT neuron.15,55
Signatures of population interactions that underlie
attentional mechanisms
We tested the following non-mutually exclusive hypotheses

(schematized in Figure 1D) about how attention might modulate

information flowwithin and between areas. (1) Attention primarily

modulates communication between areas by changing the

dimensionality of either the private or the shared subspace (Fig-

ure 1D, left column). (2) Attention improves the fidelity of commu-

nication within local populations; this would be observable as an

improvement in the ability to predict the activity of one subset of

neurons in a population from the activity of a different subset of

neurons in the same area (Figure 1D, middle column). (3) Atten-

tion improves the fidelity of communication across brain regions;

this would be evident in the improved accuracy of prediction of

neural activity of one region using the activity of the other and

vice versa (Figure 1D, right column).

Prediction of SC activity from MT activity using linear
models improves with attention
Testing the predictions of our hypotheses requires calculating

the ability to predict the activity of one population of neurons

from another and identifying the dimensions of neural population

space through which functional communication occurs. We plot

the results of these analyses for one representative session in

Figure 2. We used ridge regression to impose a sparse mapping

between random subsets of MT neurons and the full populations

of SC neurons in each attention condition (see STAR Methods

and Semedo et al.50).

Several features of this example recording session were

typical of our dataset. First, no subset of the recorded MT neu-

rons could predict SC neural activity as well as the full popula-

tion; the prediction accuracy monotonically increased with the

addition of MT neurons. Second, the accuracy of prediction

was significantly improved in the attend in trials versus attend

out trials across all sub-selections of the MT population. Third,

attention also improved the ability to predict random subsets

of SC neurons from the full population of recorded MT neurons

(Figure 2B).

To determine the relationship between these measures of

functional communication between neuronal populations in MT

and the SC and more well-studied effects of attention, we next

calculated traditional metrics neuronal activity like the average

pairwise spike count correlation (Figure 2C) and population firing

rate (Figure 2D). For this session, attention significantly

decreased spike count correlations in both MT and SC but did

not have an effect on variability shared between pairs of neurons

in different brain areas. Attention also significantly increased

mean firing rates in this session. Firing rate and correlation

changes across sessions are detailed in Figures S1 and S3.

For the example session, we observed no attention-related

change in the population dimensionality in MT (�5 dimensions;

Figure 2E) and SC (�3.5 dimensions; Figure 2G), defined as

the smallest number of dimensions that captured 95% of the

variance in the shared covariance matrix (assessed using

factor analysis;56 also see STAR Methods for code and other

resources).

We next tested whether, as between two areas of visual cor-

tex,50 interactions betweenMT and the SC are limited to a subset

of dimensions of neural population space. For the example
Current Biology 31, 5299–5313, December 6, 2021 5301



Figure 2. Attention improves prediction of SC activity from MT activity, increases firing rate, and decreases spike-count correlations in an
example recording session

(A) For an example session, the prediction accuracy of 1–26 randomly sampled (without replacement) MT neurons predicting the activity of a population of 21 SC

neurons in the two attention conditions (attend in refers to the trials in which attention was directed within the joint RFs of the MT and SC neurons and attend out

refers to trials in which attention was directed in the opposite hemifield). Prediction was performed using a linear model with ridge regression, and prediction

performance was defined as 1-cvLoss, where cvLoss is the average cross-validated normalized square error (NSE) for the smallest ridge parameter for which the

performance was within 1 SEM of the peak performance. Each point represents the mean prediction performance for n MT neurons predicting the full population

of SC neurons. Error bars represent the SEM across random subsamples of n neurons.

(B) Same as (A) but for predicting random subsets of SC neurons using the activity of the full population of MT neurons, showing that the effect of attention onMT-

SC communication is not limited to a subpopulation of either the MT or SC neurons recorded in this session.

(C) Spike count correlation (rSC) defined as the correlation between the responses of pairs of neurons to all stimulus presentations for all MT neurons (325 pairs,

red), SC neurons (210 pairs, blue), andMT-SC pairs (546 pairs, black). Attention decreases spike count correlations inMT (p = 1.23 10�10; Wilcoxon signed-rank

test [WSRT]) and SC (p = 0.0206;WSRT) but has no effect on pairwise correlations across areas (p = 0.2;WSRT) for this recording session. Note that the decrease

in average SC neuron pairwise correlations in this session is not representative of the trend across sessions. See Figure S1 for rSC for all pairs across recording

sessions.

(D) Neuronal firing rates increase with attention inMT (p = 8.33 10�6;WSRT) and SC (p = 0.04;WSRT) for this session. See Figure S1 for firing rates for all neurons

across sessions.

(E) Factor analysis of MT population responses for this session reveals that 90% of the variance in the MT response fluctuations can be accounted for by �5

dimensions. The number of population dimensions is greater for the attend in condition versus the attend out condition. The arrow in the icon signifies that theMT

population (source) is being used to predict the SC population (target), henceforth labeled as MT / SC prediction.

(F) Predicting SC activity from MT responses using reduced-rank regression (RR regression) (black and gray lines) and ridge regression (triangle) reveals that the

prediction performance for amatched number of trials is dramatically better for the attend in condition (black) versus the attend out condition (gray). The optimum

number of dimensions (circle) for the RR regression was defined as the lowest number of dimensions for which prediction performance was within 1 SEM of peak

performance. This performance is at least as good as the performance of the ridge regression performance that uses all the source dimensions for prediction (the

difference between the RR regression prediction and the ridge regression prediction was not significant across sessions; data not shown). The number of source

dimensions required for optimum regression performance was 3 for attend in and 2 for attend out, suggesting that fewer dimensions are required for

communication between MT and SC than the total number of population dimensions.

(G) Factor analysis of SC neurons reveals that 90%of the variance in the SC response fluctuations can be accounted for by 3 to 4 dimensions. For this session, the

number of population dimensions is greater for the attend out condition versus the attend in condition.
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session in Figure 2, only 2 to 3 dimensions of MT activity (identi-

fied using reduced rank regression; STAR Methods; defined at

the number of dimensions at which the curves in Figure 2F reach
5302 Current Biology 31, 5299–5313, December 6, 2021
asymptote) predicted SC activity at least as well as a full linear

model (fit using ridge regression; STARMethods). The prediction

accuracy for the attend in trials was significantly better than the



Figure 3. Randomly partitioned populations of MT and SC neurons predict activity within and across areas better with attention for the same

example session

To compare prediction performance for inter- and intra-areal interactions, we randomly split both the populations of MT and SC neurons into two halves each—

the target and source halves—as indicated in the icons. Each source half was used to predict the activity of both target halves using both the full linear model

(ridge regression) and the RR regression model. This split was done 20 times, and the mean performance across the random splits is shown in (C)–(F). Error bars

indicate the SEM across these splits.

(A) Factor analysis of MT neurons reveals that 95% of the variance in the MT response fluctuations can be accounted for by �4 dimensions on average across

all splits for this session. The number of population dimensions is greater for the attend in condition versus the attend out condition.

(B) Same as (A) for SC neurons. For this session, SC population fluctuations are captured by �3 dimensions in both attention conditions.

(legend continued on next page)
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attend out trials irrespective of the number of predictive dimen-

sions (the black line is always above the gray line in Figure 2F).

Attention improves prediction accuracy for inter-areal
communication channels
Testing our hypothesized mechanisms of information flow (Fig-

ure 1) requires determining how attention affects the dimension-

ality and informativeness of interactions within and between

populations of neurons in MT and the SC. We therefore fit linear

models for repeated random splits of the populations of re-

corded MT and SC neurons in all four directions—MT / SC,

MT / MT, SC / MT, and SC / SC. We depict the effect of

attention on these four communication channels (for the same

single session as in Figure 2) in the form of mean prediction ac-

curacy across all tested population splits (Figures 3C–3F). For

this session, the prediction performance improves with attention

for all functional communication channels except within MT,

where it depreciates. We estimated the population dimension-

ality of each of the randomly split populations of MT and SC neu-

rons using factor analysis to compare with number of predictive

dimensions (Figures 3A and 3B). Consistent with results for the

full population above, the number of dimensions within each

area is not affected by attention.

Across sessions, prediction performance betweenMT and the

SC improves with attention without changing the dimensionality

of that communication (Figure 4). Whereas prediction accuracy

for intra-areal communication was consistently high and re-

mained unaffected by attention, the prediction accuracy for in-

ter-areal communication significantly improved with attention

(Figure 4B, which shows the ratios of the number of predictive di-

mensions and of the prediction accuracy in the two attention

conditions). Attention does not affect the number of predictive

dimensions required for communication within and across areas

(themarginal distributions of ratios are centered at and not signif-

icantly different from 1) but improves the prediction accuracy be-

tweenMT and the SC (the distributions of ratios of MT/MT and

SC / SC prediction accuracy are centered at and not signifi-

cantly different from 1, but the ratios of MT / SC and SC /

MT prediction accuracy are significantly greater than 1; see

also the distributions for each communication channel in Figures

S2 and S3). We analyzed the effect of attention on the population

dimensionality and the number of dimensions required for pre-

diction in detail in the next section. To quantify the size of the

effect of attention for each session, we calculated a modulation

index for prediction performance (difference of prediction perfor-

mance in the two attention conditions divided by the sum). The

inter-areal modulation indices (MT / SC: 0.164 ± 0.04 and

SC / MT: 0.124 ± 0.04) were considerably larger than intra-
(C) Average prediction performance for the full model (black and gray triangles)

the MT and SC populations. The orange circle indicates the average optimum pe

random splits. For each session, this point of optimum performance is plotted

improves MT / SC prediction performance. For all predictions, the RR regre

regression.

(D) Same as (C) forMT/MTpredictions. For this session, attention degrades pre

prediction dimensions are indicated with blue circles.

(E) Same as (C) for SC/ SC predictions. For this session, attention improves pred

prediction dimensions are indicated with green circles.

(F) Same as (C) for SC/MT predictions. For this session, attention improves pred

prediction dimensions are indicated with pink circles.
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areal modulation indices (MT / MT: 0.005 ± 0.019 and SC /

SC: 0.068 ± 0.02; Figure S2). Importantly, while the prediction

performance of SC / SC regressions across sessions was

significantly greater for the attend in than the attend out condi-

tion, the effect size was small. A larger dataset of neurons and

sessions may be required to definitively test the hypothesis

that attention changes the efficacy of within area communication

in oculo-motor areas.

While attention is known to affect the mean pairwise spike

count correlations within and between areas,6,11,15,16 we found

that attention-related improvements in inter-areal prediction ac-

curacy are not contingent on increases or decreases in mean

spike count correlations between pairs of neurons within MT,

within SC, or between MT and SC across sessions (Figure S3).

We found that the mean spike count correlations between pairs

of MT neurons and pairs of SC neurons are related to intra-

areal prediction accuracy within MT and SC populations,

respectively, but this relationship does not extend to mean spike

count correlations between MT-SC pairs and inter-areal

response predictions.

We further investigated the relationship between spike count

correlations and prediction performance by examining correla-

tions that may persist on timescales longer than a single stimulus

presentation. We time shifted responses of the target population

by 0–5 stimulus presentations and recalculated prediction accu-

racy and mean spike count correlations as described above. As

expected, both spike count correlations and prediction accuracy

within and across brain areas decay with time shift (shown for a

single session in Figures 5A–5D). To visualize this decay across

sessions and to directly compare spike count correlations and

prediction accuracy, we normalized each decay profile by the

value at time shift 0 and plotted the median decay profile across

sessions (Figures 5E and 5F). Across sessions, whereas all pair-

wise correlations decay to �0 within 3 to 4 time-shifted stimulus

presentations, prediction performance for MT/ SC, SC/MT,

and SC/ SC predictions does not. Parallel to the results in Fig-

ure 4, absolute MT / SC prediction performance is higher for

attend in trials compared to attend out trials for all time shifts,

and performance for attend in trials decays to �50% of peak

value within 5 time shifts and to �75% of peak value for attend

out trials, i.e., performance remains relatively high across long

timescales. This analysis emphasizes the differences between

mean spike count correlations and prediction accuracy, and it

also points to potential neuromodulatory mechanisms that may

underlie the attentional effects on the same timescales.

The connectivity and functional roles of populations of SC neu-

rons differ by layer, so we made use of our recordings that

spanned layers to investigate whether functional communication
and the RR regression model (black and gray circles) across random splits of

rformance and average number of optimum prediction dimensions across the

in different comparisons in the following figures. For this session, attention

ssion model performs at least on par with the full linear model using ridge

diction performance. The average optimumperformance and average optimum

iction performance. The average optimum performance and average optimum

iction performance. The average optimum performance and average optimum



Figure 4. Attention improves the accuracy of across-area predic-

tion, but not within-area prediction, without altering the dimension-

ality of the communication subspace

Each point of a given color represents a recording session. The color scheme

is depicted in the icon in (C) and is consistent with other figures.

(A) Attention does not affect the dimensionality of the interaction between MT

and SC neurons. Each point represents the average number of optimum

predictive dimensions for each session for one of the four predictions—MT/

SC (orange), MT/MT (blue), SC/ SC (green), and SC/MT (pink)—for the

two attention conditions. There was no significant difference between the

number of predictive dimensions for any of the four predictions. See Figure S5

for a detailed version of this panel (MT-MTmean 3.67, range 1.5–5.2 for attend

in and mean 3.74, range 1.1–5.3 for attend out; SC-SC mean 4, range 2.9–5.3

for attend in and mean 3.9, range 2.85–5.7 for attend out; MT-SC mean 1.8,

range 1–2.5 for attend in and mean 1.75, range 1–2.7 for attend out; SC-MT

mean 1.6, range 1–2.7 for attend in and mean 1.55, range 1–3.15 for attend

out).

(B) Attention significantly increases the prediction accuracy of inter-areal, but

not intra-areal, interactions. Each point represents the average prediction

performance across random splits for one of the four predictions. The purple

inset affords a zoomed-in view of the relevant part of the plot, which reveals

that the points corresponding to the MT / SC (orange) and SC / MT (pink)

predictions lie below the unity line. See Figure S2 for a detailed version of this

panel. The drop in the absolute values of prediction accuracies compared to

Figures 2 and 3 is due to the split source and target populations to enable

comparisons of within- and across-area prediction.
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between MT and the SC depends on layer as well. MT projec-

tions to SC predominantly end in the superficial layers in

SC57,58 (but also see Lock et al.59). Tecto-pulvinar projections

from the superficial and intermediate layers of SC end in the infe-

rior pulvinar, which in turn projects to extra-striate areas.60,61

Also, there is some evidence that extra-striate projecting lateral

geniculate nucleus (LGN) neurons do not receive direct retinal

input and are dependent on SC projections across all layers for

relaying visual information to MT.62,63 Given these laminar differ-

ences in cortical and thalamic inputs to and outputs from SC, we

tested whether there is a difference between the attentional ef-

fect on information flow across functional classes of SC neurons.

To classify SC neurons, we calculated an oculo-motor score

based on SC neuron responses to visual stimuli and responses

just prior to saccade onset (STAR Methods), divided each pop-

ulation into two groups based on the rank ordering of oculo-mo-

tor scores, and repeated our analyses (Figure S4). We found no

significant differences in the effect of attention on either the pre-

diction accuracy or the number of dimensions required for pre-

diction between the SC populations split by oculo-motor score

(labeled visual andmotor for brevity). Compared to random splits

of the SC population, when split by oculo-motor score, the effect

of attention on the prediction accuracy of the SC / SC regres-

sion is pronounced (Figure S4C).

Attention does not improve information flow by altering
private or communication subspaces
The attention-related improvement in information flow could in

principle arise by changing the subspaces of activity responsible

for functional communicationwithin or betweenareas.Wedidnot

find evidence that attention changes the dimensionality of any of

these subspaces: there was no attention-related change in the

dimensionality of the local populations of MT and SC neurons

(FiguresS5AandS5B, respectively) or in the number of predictive

dimensions for the various communication subspaceswithin and

between the twoareas (FiguresS5C–S5F).Weconsistently found

that more dimensions were required to account for intra-areal

communication than to account for inter-areal communication

(mean 3.6 for MT / MT and 4 for SC / SC versus 1.8 for

MT / SC and 1.6 for SC / MT). This disparity suggests that

MT and SC interact via a limited communication subspace.

Semedo et al.50 compared the number of predictive dimen-

sions with the number of target dimensions to infer that V1 and

V2 communicate using a communication subspace. We first

replicated those results in the context of MT-SC communica-

tion—when we compared the number of dimensions used for

private communication with the number of shared dimensions

for MT / MT prediction and MT / SC prediction, we found
(C) The data in (A) and (B) visualized as a ratio of attend in and attend out. The

marginal distributions of the ratios of prediction accuracy and predictive di-

mensions for all four predictions are also displayed. The ratios of means of

prediction accuracy for MT / SC (orange) and SC / MT (pink) were signif-

icantly greater than 1 (p = 0.0016 and p = 0.012, respectively; t test). Filled-in

histograms indicate sessions for which the mean of the corresponding metric

(prediction accuracy or prediction dimensions) in the attend in condition was

more than two standard deviations away from the mean of the metric in the

attend out condition. The colored arrows in the icon indicate the source

and target populations for each of the four predictions.
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Figure 5. Inter-stimulus (long timescale) spike count correlations within and across areas decay faster than linear predictions

(A)–(D) depict the decay in spike count correlations (y axes in A and B) and in prediction performance (y axes in C and D) within and across areas as a function of

time (in stimulus presentations, x axes) for an example session. (E) and (F) depict decay as a proportion of peak values across sessions. Error bars indicate the

SEM across MT and SC population splits (see also Figure S3 for comparisons of the effect of attention on prediction accuracy with the effect on spike count

correlations and attentional modulation).

(A and B) Spike count correlations decay rapidly across time shifts for MT, SC, and MT-SC neuron pairs for attend in trials. Within- and across-area spike count

correlations decay comparatively slower for attend out trials for this example session.

(C and D) Prediction performance rapidly decays to 0 for all predictions in this example session, although within SC prediction performance remains higher

than baseline (0) for attend out trials. Note that the profile of decay in the prediction accuracies in this session is not representative of the median across sessions

(E and F).

(E and F) Decay in prediction performance (x axis) or pairwise correlations (y axis), normalized by the value at time shift 0 (time-aligned trials between source and

target populations). Within-area predictions (MT / MT and SC / SC) are compared with within-area pairwise correlations (MT and SC correlations, respec-

tively), and across-area predictions (MT / SC and SC / MT) are compared with across-area pairwise correlations (MT-SC correlations). Thin lines are decay

ratios for each session; thick lines are median values across session for each time shift. Time shifts are indicated with grayscale markers in the median curve.
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that significantly fewer dimensions are required for MT / SC

communication than are available, but MT / MT communica-

tion utilizes all available dimensions (Figure 6A). In addition, we

found no difference in the dimensionality of the communication

subspace compared to target population dimensionality across

attention conditions (Figures 6B and 6C). We found similar re-

sults in the SC / MT direction when compared with SC /

SC communication (Figures 6D–6F). We found no relationship

between the functional communication channels when assessed

on a session-by-session basis (Figure S6). We also did cross-

prediction analyses (using the attend in linear model to predict

attend out data and vice versa) to check whether the structure

of the communication subspace changes while keeping its
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dimensionality, in turn causing the prediction accuracy to be bet-

ter (Figure S7). We found that while the intra-areal models per-

formed almost as well when swapped, the inter-areal models

suffered a loss in prediction accuracy. This does not necessarily

imply that the geometry of the communication subspaces

changes with attention but that linear methods are unable to

find a common subspace between the two attention conditions

(also see Discussion).

Attention improves information flow between V1 andMT
Both MT and SC exhibit relatively large attention-related

changes in a number of measures of neuronal activity.64–69

Attention-related improvements in information flow may in



Figure 6. MT and SC populations interact via a communication subspace, but attention has no effect on the dimensionality of the commu-
nication subspace

Each point represents a recording session, and the color scheme is the same as other figures. Colored + represents the mean of the corresponding points. This

figure compares the number of factors that explain 95% of the variance in the target area (from factor analysis) with the number of dimensions in the source area

that are sufficient to predict the target area activity (from RR regression). Qualitative comparisons between the absolute values of the ‘‘number of dimensions’’

from these two analyses are depicted in (A), (B), (D), and (E). The effect of attention is depicted in (C) and (F) (see also Figures S5 and S6 for detailed comparisons of

the effect of attention on population and subspace dimensions).

(A) For the attend in condition, the number of private predictive dimensions are greater than the number of shared predictive dimensions in MT. Further, for the

MT / SC prediction (orange points), fewer dimensions are required to predict SC activity than are required to explain 95% of the variance in the SC activity,

forming a communication subspace inMT that comprises�2 shared dimensions that are sufficient to predict the�4-dimensional activity in SC. For theMT/MT

prediction, the number of predictive dimensions is similar to the number of population dimensions, i.e., the predictive dimensions in MT are as large as possible

and closely match the complexity of the target population, unlike the MT / SC prediction.

(B) Same as (A) for the attend out condition.

(C) Data in (A) and (B) presented as a ratio to compare the effect of attention on the communication subspace in MT.

(D) For the attend in condition, the number of private predictive dimensions is greater than the number of shared predictive dimensions in SC. For the SC/MT

prediction (pink points), fewer dimensions are required to predict MT activity than are required to explain 95% of the variance in the MT activity, i.e., a

communication subspace exists in SC that comprises �2 shared dimensions that are sufficient to predict the �3.5-dimensional activity in MT.

(E) Same as (D) for the attend out condition.

(F) Data in (D) and (E) presented as a ratio to compare the effect of attention on the communication subspace in SC.

ll
Article
principle be exclusive to pairs of regions that individually show

significant changes in local representations. We tested this hy-

pothesis by analyzing previously published simultaneous re-

cordings of populations of neurons in V1 (which tend to show

very modest effects of attention) and a single MT neuron.15,23,55

As with the MT / SC results, we found that attention dramat-

ically improves V1 / MT prediction accuracy (Figure 7C;

because we only recorded one MT neuron at a time, it was

not possible to compute MT / V1 prediction accuracy).

Also, the performance of V1-V1 predictions is not affected by

attention (Figure 7D). These results demonstrate that, even

though the effect of attention on V1 was small, attention-related

effects on inter-areal communication are not contingent on

large effects of attention in individual regions.
DISCUSSION

Our results show that attention changes the functional

communication between populations of visual and premotor

neurons. We demonstrated that attention changes the extent

to which the activity of populations of neurons in the SC can

be predicted by the activity of populations of neurons in MT

and vice versa. These changes in functional interactions be-

tween areas are not accompanied by changes in the dimen-

sionality of the subspace of activity that is shared between

areas, and they are not obligatorily related to changes in firing

rates, noise correlations, or population activity within each

brain area. These results suggest that changes in information

flow are well positioned to mediate behavioral flexibility and
Current Biology 31, 5299–5313, December 6, 2021 5307



Figure 7. Attention enhances prediction ac-

curacy between V1 and MT

(A) Schematic of the motion direction change

detection task used during the V1-MT recordings.

The monkeys were instructed to attend to changes

in motion direction at one of three spatial locations

while ignoring changes at the other two locations in

blocks of 50–100 trials. Themonkey started the trial

by fixating a central spot. Two or three small Gabor

stimuli synchronously flashed on for 200ms and off

for a randomized 200- to 400-ms period. Two of the

stimuli were positioned inside the joint receptive

fields (RFs) of the V1 andMTneurons, and the other

was in the opposite hemifield. Trials during which

attentionwas directed into theMTRF toward either

of the two spatial locations were considered attend

in trials, and trials inwhich attentionwas directed to

the opposite hemifield were considered attend out

trials. In blocks when the monkey was cued to

attend to one of the two locations inside the RFs,

the third stimulus was not presented. One of the

two stimuli in the RF moved in the preferred direc-

tion of recordedMTneuron, and the othermoved in

the anti-preferred direction. When presented, the

third stimulus moved in the preferred direction of

the MT neuron. After a randomized number of

stimulus presentations (between 2 and 13), the di-

rection of one of the stimuli changed. Themonkeys

were rewarded for making a saccade to the direc-

tion change in the cued location. Premature sac-

cades or saccades to changes in motion direction

at the uncued location were not rewarded. We

analyzed all identical stimulus presentations

except the first tominimize the effect of adaptation.

(B) RF locations of recorded units from an example recording session. The gray dots represent the RF centers of 96 V1 neurons. The dotted circle represents the

size and location of the RF for the recorded MT neuron. The size and locations of the stimuli were selected such that they lie within the MT RF.

(C) Attention improves the performance of V1 / MT prediction. Each dot represents the cross-validated performance for a linear model of the MT neuron’s

activity from V1 population activity using ridge regression for one recording session. The prediction accuracy on attend in trials was significantly greater than the

accuracy on attend out trials (p = 0.0159; Wilcoxon signed-rank test). The value of the ridge parameter was chosen to be the smallest value for which the model

performance was within 1 SEM of the peak performance.

(D) Attention does not affect the prediction accuracy or the number of predictive dimensions of intra-areal interactions. Each point represents the ratio of the

average prediction performance and the average number of predictive dimensions of a linear model for random splits of the V1 population using RR regression.
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place important constraints on models of flexible neural

circuits.

How attention-related increases in functional
communication fit in with hypothesized mechanisms
underlying attention
Previous studies have focused on a small number of hypothe-

sized mechanisms by which attention might improve percep-

tion.54,70–72 The most studied hypothesis is that attention im-

proves perception by improving information encoding.6,11,16,73

The observed attention-related changes in the responses of indi-

vidual neurons and in correlations between visual neurons appear

consistent with this hypothesis. However, neuronal populations

typically encode more than enough sensory information to ac-

count for psychophysical performance,14,17,49,74,75 and the

changes in trial-by-trial fluctuationsmay not reflect changes in in-

formation coding that are behaviorally relevant.76,77 An alternate

theory is that attention selectively improves the communication

of sensory information to the neurons involved in perceptual de-

cision making. Physiological studies along these lines have pri-

marily focused on changes in synchrony or coherence between
5308 Current Biology 31, 5299–5313, December 6, 2021
areas on very short timescales (one or a few milliseconds; for re-

view, see Womelsdorf and Fries43) or using human imaging data

to assess functional connectivity over multiple seconds.78–80

However, co-variability on short timescales is mathematically

nearly independent of correlations on the timescale of hundreds

of milliseconds,81 and unlike fluctuations on very short or very

long timescales, response fluctuations on the timescale of hun-

dreds of milliseconds covary with perceptual decisions.82,83

Our results demonstrate that attention changes functional

communication on the timescale of hundreds of milliseconds

or seconds (Figure 5). This timescale can provide hints as to un-

derlying mechanisms. For example, we showed previously that,

in a network with spatially ordered, broad connectivity, modu-

lating the balance of inhibition to excitation can change corre-

lated variability on the timescale of hundreds of milliseconds.45

Further, attention has been associated with changes in neuro-

modulators, including acetylcholine84,85 and dopamine,86–88

which operate on similar timescales as the attention-related

changes in functional connectivity we observed.

Recently, we showed that attention is associated with only

modest changes in either information coding in visual cortex or
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the way information is read out by premotor neurons on the time-

scale of perceptual decisions.14 Instead, our multi-neuron, multi-

area recordings suggest that attention reshapes population

activity in visual cortex, which changes the visual information

that guides behavior via relatively fixed readout mechanisms.

Our current results suggest a functional implication of this re-

shaping, changing the information that is shared between sen-

sory neurons and the premotor neurons involved in decision

making in a way that does not rely on obvious changes in the

subspace of activity that is shared between them.

The communication subspace as a mechanism for
flexible behavior
Several recent studies have shown that the activity of populations

of neurons in many areas is generally confined to a subspace of

population activity that ismuch lower dimensionally than the num-

ber of recorded neurons.54,56,89–101 The divergent anatomical

connections between even the most highly interconnected brain

areas have long suggested that only a portion of the information

encoded in each area is shared between areas.

A recent set of studies used recordings from multiple popula-

tions of neurons to establish that functional communication be-

tween different brain areas in the motor94 or visual system50,102

is confined to a subspace of activity that is even lower dimen-

sionally than the activity within each area. Our results are consis-

tent with the proposal that this limited communication subspace

is an attractive mechanism for behavioral flexibility.50,94 Because

only a subset of information is shared, reshaping activity within

the source area (as in Ruff and Cohen14) and/or having a fixed

but nonlinear subspace (proposed in Semedo et al.50) would

change the information that is functionally communicated to a

target area. Using cross-prediction analyses, we found that

these linear methods reveal a difference in the structure of the

communication subspace across attention conditions, but this

observation may be consistent with a fixed, non-linear commu-

nication subspace, and information flow could be improved by

shifting the alignment of the shared fluctuations along the non-

linearity (Figure S7). This mechanism is particularly attractive

because changes in functional communication could occur

without relying on changes in the weights relating one

population to another, which may rely on synaptic plasticity

mechanisms that occur over longer than behaviorally relevant

timescales.48

Our results suggest that the amount of information shared via

the communication subspace between visual areas (V1 and MT;

Figure 7) or between visual and premotor areas (MT and the SC;

Figure 4) is in fact flexible. In future studies that explore a broader

range of visual stimuli and behavioral tasks, it will be interesting

to test the limits of this flexibility. For example, it will be important

to knowwhether this mechanismmight mediate flexible commu-

nication of different stimulus features or information accumu-

lated on different timescales that must mediate more complex

forms of behavioral flexibility.

An interesting aspect of spatial attention is that it is intimately

linked to planning eye movements.103,104 This link is explicit in

our task: when we cue a stimulus, we effectively instruct the

monkey both to be better at the visual task of detecting a change

and to plan an upcoming eyemovement to that location. There is

evidence that, even in tasks in which the behavioral response is
not an eye movement or when the eye movement is to a different

location than the attended stimulus, attention also affects covert

eye movement planning.105 Our observation that attention af-

fects functional interactions between V1 and MT, two areas

with modest premotor signals, hints that the changes in func-

tional communication we observed may not require changes in

motor planning. In future work, it will be important to see whether

attention can change functional communication using forms of

attention that are not linked to motor planning (e.g., feature

attention).106,107

Constraints on mechanistic models
Measurements of the activity of large populations have

proven critical for constraining mechanistic models. Phenome-

nological models can explain attention-related changes in firing

rates,1,108–112 but these do not provide insight into circuit mech-

anisms. A staggering variety of biophysical models can recreate

the effects of attention on the trial-averaged responses of indi-

vidual neurons.45,113–118 We and others have shown that atten-

tion-related changes in correlated variability that resides in a

low dimensional subspace of population activity provides

much stronger constraints on circuit models.45,116

The observation that functional communication between

areas is lower dimensional compared to activity within each

area51,94 and our observation that attention changes this

communication will further constrain circuit models. In particular,

many models45,116,119–121 and experiments122–124 implicate inhi-

bition in the flexibility of neuronal populations, but early efforts

suggest that these mechanisms do not readily create low

dimensional and flexible communication subspaces (Gozel and

Doiron, 2021, Cosyne, poster). It is possible that the complemen-

tary influence of different subtypes of inhibitory interneurons

may underlie the flexible functional communication we

observed.84,125–127 Using observations about interactions be-

tween neural populations to constrain mechanistic, generative

models will be critical for understanding how neural circuits

give rise to behavior in a wide variety of systems, species, and

disease states.

Concluding remarks
The hallmark of the nervous system is its flexibility. Flexible

behavior must rely, on some level, on flexible information flow.

Attention, which changes the behavioral importance of different

objects, features, or locations, is a good model of flexible infor-

mation flow. Our results demonstrate that this flexibility is instan-

tiated, at least in part, by changes in the information that is

shared between different stages of the visuomotor pathway.

These results lay the groundwork for establishing the role of flex-

ible inter-area communications in a variety of sensory, cognitive,

and motor computations.
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(ramanujan@pitt.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The electrophysiological data in this manuscript comes from two previously reported experiments.14,15 In both experiments, two

adult male rhesus monkeys (Macaca mulatta, 8 and 9 kg) were used. We implanted each animal with a titanium head post before

behavioral training. We identified each cortical area by visualizing the sulci during array implantation, using stereotactic coordinates,

and by observing the transition of gray and white matter signals on the movable probes. All animal procedures were approved by the

Institutional Animal Care and Use Committees of the University of Pittsburgh and Carnegie Mellon University.

METHOD DETAILS

Electrophysiological Recordings and Behavioral Task
Our methods for presenting visual stimuli andmonitoring behavior have been described previously. Briefly, we presented visual stim-

uli using custom software (written in MATLAB using the Psychophysics Toolbox v3128 on a cathode-ray tube monitor (calibrated to

linearize intensity; 1,024 3 768 pixels; 120 Hz refresh rate) placed 54 cm from each animal. We monitored eye position using an

infrared eye tracker (EyeLink 1000; SR Research) and recorded eye position and pupil diameter (1,000 samples/s), neuronal re-

sponses (30,000 samples/s) and the signal from a photodiode to align neuronal responses to stimulus presentation times (30,000

samples/s) using hardware from Ripple. All spike sorting was done offline manually using Offline Sorter (version 3.3.2; Plexon).

We based our analyses on both single units and multi-unit clusters and use the term unit to refer to either.
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In both sets of recordings described below, monkeys were trained to do a stimulus direction change detection task. Monkeys were

cued to attend to a spatial location (typically within or away from the receptive fields of the neurons). While the monkeys fixated on a

central spot, identical stimuli were flashed at two/three locations on the screen and, at an unsignaled time, one of themwould change

direction. The monkey was rewarded for making saccade toward the changed stimulus. Further details regarding stimulus locations,

timing, etc. are specific to the two recording experiments and are described below.

MT-SC recordings
We implanted two recording chambers on the right hemisphere that granted access toMT and SC for recordings with linear 24-chan-

nelmoveable probes (Plexon; interelectrode spacing inMT= 50 mm, SC= 100 mm) and simultaneously recorded activity from neurons

in MT and SC that had overlapping spatial receptive fields (Figure 1). To account for visual latencies in the two areas, spikes were

counted between 50 and 250ms after stimulus onset. We only analyzed a recorded MT unit if its stimulus-driven firing rate was

10% higher than its firing rate as measured in the 100ms before the onset of the first stimulus. We only analyzed a recorded SC

unit if its stimulus-driven firing rate was 10% higher than its firing rate as measured in the 100ms before the onset of the first stimulus

or if its response during a 100ms epoch before a saccade on hit (correct) trials to the contralateral side was 10% larger than that same

baseline. The dataset consisted of a total of 306 responsiveMT units (6-29 units per session, mean 20.4) and 345 responsive SC units

(12-29 units per session, mean 23) across 15 recording sessions (6 and 9 sessions frommonkey 1 and 2 respectively). Approximately

11.5% and 9.6% of MT and SC units respectively were single units isolated post hoc using an offline spike sorting program –MT: 0-8

(mean 2.2) single units, 5-24 (mean 18.1) multi-units per session; SC: 0-6 (mean 2.2) single units, 12-24 (mean 20.8) multi-units per

session.

Experimental task design

Each session began with receptive field mapping using a delayed-saccade task, and direction tuning during passive fixation, fol-

lowed by multiple blocks of the following attention task. Each block began with a set of trials that instructed the monkey to attend

to one of two spatial locations on the screen – either within the joint receptive fields of the neurons or in the opposite hemifield.

Following that, each trial began when the monkey acquired fixation on a central spot within a 1.25� fixation window after which

two peripheral drifting Gabor stimuli (one overlapping the receptive fields of the recorded neurons, the other in the opposite visual

hemifield) synchronously flashed on (for 200ms) and off (for a randomized period between 200 and 400ms) between 3-12 times

before, at a random, unsignaled time, the direction of one of the stimuli changed from that of the preceding stimulus. The monkey

reported the orientation change by making a saccade to the changed stimulus within 450ms and received a juice reward. Each block

consisted of approximately 100 completed trials (i.e., trials that ended in a hit or miss) after which the cued location of the orientation

change switched to the other hemifield. Stimulus presentations during the response period of which the monkey made a micro-

saccade were excluded from analysis. Neural responses to all stimulus presentations after the first (to minimize the effect of adap-

tation) and before the orientation change were analyzed. For each session, stimulus presentations were sampled such that the

number of presentations was equal for each attention condition. Each session yielded 547-1909 (mean 1277) presentations for

each attention condition. The attentional modulation index for each neuron was calculated as a difference of mean responses be-

tween the two attention conditions divided by the sum.

For each session, SC neurons were divided evenly into oculo-motor (visual for brevity) andmotor neurons based on an oculo-motor

score calculated as

scorevis=mot = ðRvis � RmotÞ
�ðRvis +RmotÞ

where Rvis is the average neural response to the onset of the first stimulus, and Rmot is the average response prior to a saccade to the

stimulus in the contralateral hemifield. This score was calculated for the trials where attention was directed into the joint RFs.

V1-MT recordings
We implanted a 10x10 chronic microelectrode array (Blackrock Microsystems) in V1 and a recording chamber to access MT. Each

recording session began with searching a well-isolated MT neuron such that its receptive field (RF) overlapped the population RF of

the V1 neurons and was driven similarly above baseline by a single stimulus flashed in each of two chosen locations. This dataset

consisted of a total of 1631 responsive V1 units and 32 responsive MT units (1 unit per session in MT, 7–83 units per session,

mean 51 in V1) across 32 recording sessions.

Experimental task design

Each block of trials began with a set of trials that instructed the monkey to attend to one of three spatial locations on the screen –

either one of two locations within the receptive field of the MT neuron or one in the opposite hemifield. Each trial began when the

monkey acquired fixation on a 1� fixation window. For blocks in which attention was directed within the RF of the MT neuron, two

achromatic Gabor stimuli of equal contrast, spatial frequency, and speed were presented drifting in opposite directions (preferred

and null direction for the MT neuron). For blocks in which attention was directed to the opposite hemifield, a third drifting Gabor

was similarly flashed at the cued location. In these blocks, the contrast of the stimulus at the cued location was different from the

two stimuli within the RF of the MT neuron. This was done to study the stimulus dependence of spike count correlations across

cortical areas but is not critical to the current analyses as here the comparison is between the trials where attention is directed either

into or out of the RF of the MT neuron regardless of stimulus parameters or specific location with the RF. After 2-14 presentations of
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the same stimuli, the direction of the stimulus at the cued location was changed and themonkey was rewarded for making a saccade

to the changed stimulus within 500ms. As with the MT-SC data, stimulus presentations during which the monkey made a micro-

saccade were excluded from analysis, all stimulus presentations after the first and before the orientation change were analyzed,

and the presentations were sampled such that they were equal in the two attention conditions. Each session yielded 97-1469

(mean 583) presentations for each attention condition.

QUANTIFICATION AND STATISTICAL ANALYSIS

Subsampling
To test whether attention affects prediction of neural responses within and across areas, we first sought to check whether or not the

number of recorded neurons and trials across the two attention conditions in the datasets were sufficient for reasonable regression

performance. We used a linear model of the form Y = XBwhere X and Y are matrices of t x n and t x m dimensions and B is the weight

matrix of dimensions n xm (here, t is the number of stimulus presentations in a session,m and n are the numbers of neurons in the two

areas). We found the ordinary least-squares solution for B by minimizing the squared prediction error as B = (XTX)-1XTY. We sampled

NMT neurons (where N went from 1 to the total number of recorded MT neurons) without replacement and used ridge regression to

predict SC responses. We did this subsampling 100 times for each N. For ridge regression, we chose the value of the regularization

parameter (l) using 10-fold cross-validation. The reported prediction accuracy is for the model with the largest l for which mean per-

formance (across folds) waswithin one SEMof the best performance acrossmodels. We also used the full MT recorded population to

predict the responses of subsets of N SC neurons (where Nwent from 1 to the total number of recorded SC neurons) using the same

method.

Noise correlations
The spike count correlation (rSC) was calculated as the correlation coefficient between the responses of the two units to repeated

presentations of the same stimulus. Z-scoring responses before calculating noise correlations did not qualitatively change the com-

parisons between noise correlations and local or shared dimensionality or prediction accuracy. In Figure S1, noise correlations are

computed for each pair in a session using all stimulus presentations in every trial (except the first), and then pooled across sessions

and monkeys to yield 3315 pairs in MT, 3975 pairs in SC, and 6934 pairs across MT and SC. In Figure S3, noise correlations are

computed as above and then averaged for each session.

Regression
To find the effect of attention on the ability of MT responses to predict SC responses and vice versa, we used the same linear

model described above using ridge regression. This model is referred to as the full regression model in the text. To assess

whether the SC activity can be predicted using a subset of MT population response dimensions (in other words, a subspace

of MT activity), we used reduced-rank (RR) regression. The exact description and formulation of RR regression can be found

in Semedo et al.50 Briefly, RR regression constrains the weight matrix B to be of a given rank and is solved using singular value

decomposition:

YRRR = XBRRR = XBOLSVV
T = XBVT

whereBOLS is the coefficientmatrix for the ordinary least-square solution,BRRR is the coefficient matrix for the RR regression solution,

V is a matrix whose columns contain the top principal components of the optimal linear predictor YOLS = XBOLS. The columns of B

define which dimensions of X are used for generating the prediction i.e., the predictive dimensions. As with the ridge regression so-

lution above, we used 10-fold cross-validation and found the smallest number of dimensions for which predictive performance was

within one SEM of the peak performance. The prediction performance of both ridge and RR regression was calculated as 1-cvLoss,

where cvLoss is the mean normalized squared error across folds between the test data and the predictions from each fold, which is

equal to the sum of squared errors divided by the total sum of squares of the target data.

Long timescale correlations and regression
To assess how pairwise correlations and prediction performance decays with time, we performed the above analyses with time

shifted stimulus presentations (Figure 5). First, we ordered all eligible stimulus presentations by time and then, for each time

shift, we shifted the response for each neuron in the target population by 0-5 stimulus presentations and repeated the analyses

described above, i.e., we split source and target populations (20 times) and calculated pairwise correlations for pairs of neurons

in MT, in SC, and for MT-SC pairs, and prediction performance within and across areas using RR regression. This procedure

was performed separately for attend in and attend out trials. This revealed an expected decay in prediction performance and

pairwise correlations with time. To compare these results across sessions, we calculated the percentage drop in correlations

and prediction performance relative to time shift 0 (when the stimulus presentations were aligned) and compared the rate of

correlation decay and rate of prediction performance decay (Figures 5E and 5F). We compared within area prediction perfor-

mance decay with the pairwise correlation decay for that area, and across area prediction performance decay with correlation

decay for MT-SC pairs.
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Cross-condition, cross-validated regression
To assess the effect of attention on the structure of the shared subspace between interaction populations of neurons, we calculated

how well the regression weight matrix for one condition (attend in, say) predicted the responses of the target population in the oppo-

site condition (attend out). In the first analysis, we simply used the cross-validated optimum number of dimensions to obtain a

weight matrix in one condition and tested it against the trials of the other condition. The results of this method are depicted in Figures

S7A–S7D. The accuracy of the inter-areal interaction dropped significantly but the accuracy of the intra-areal interaction was not

affected. To assess whether this was a result of a linear scaling of the weight matrix across conditions due to non-stationarities or

other task/stimulus independent factors, we projected the response of the source population using the weight matrix of the opposite

condition before performing RR regression to obtain the prediction. This was cross-validated in the following way described in

pseudo-code (for the MT / SC interaction, for the attend out trials using the attend out versus attend in models, but we followed

the same process for all potential permutations of conditions and areas).

For each fold, run 1-7:

1. W_out = regress(MTout,train - > SCout,train)

2. SCout,testPred = predict(MTout,test, W_out)————- (A)

3. W_in = regress(MTin,train - > SCin,train)

4. MTout,train’ = project(MTout,train, W_in)

5. MTout,test’ = project(MTout,test, W_in)

6. W_outCross = regress(MTout,train’ - > SCout,train)

7. SCout,testPredCross = predict(MTout,test’, W_outCross)—(B)

attendOut_NSE_within = NSE(SCout,testPred, SCout,test)

attendOut_NSE_cross = NSE(SCout,testPredCross, SCout,test)

ratio = attendOut_NSE_cross/attendOut_NSE_within

The ratio thus obtained was a cross-validated measure of howwell the attend out weight matrix (W_out) performs compared to the

weight matrix (W_outCross) that is trained to predict the same activity projected through the attend in weight matrix (W_in) first. We

ran this for 10-folds for each random split of each population (described above) and evaluated the ratio of the normalized square error

of prediction using both the matrices. This ratio is a quantitative measure of how well the cross-condition weight matrix performs

relative to the within-condition weight matrix and values substantially lower than 1 would indicate a drastic drop in performance

and, therefore, that the linear communication subspace between the two interacting populations is qualitatively different in their

structure. We found this to be true for inter-areal interactions but not within-area interactions (Figures S7E–S7H).

Factor Analysis
Weused factor analysis (FA) to assess the dimensionality of neural activity within an area. FA is a static dimensionality reduction tech-

nique that does not assume the same noise variance for all recorded neurons and calculates the dimensions of greatest covariance

(instead of variance). As with RR regression, the details of this analysis can be found in previous publications.101,129,130 We followed

the same steps as previously published work to estimate the dimensionality: (1) we found the number of dimensionsmpeak that maxi-

mized the cross-validated log-likelihood of the observed residuals; (2) we fitted a FAmodel withmpeak dimensions and chosem, using

the eigenvalue decomposition, as the smallest dimensionality that captured 95% of the variance in the shared covariance matrix.

These population dimensions (m) and predictive dimensions as determined from RR regression are determined by different tech-

niques and therefore, wherever applicable, we have used these techniques to evaluate only the change of dimensionality (private

or shared) between the two attention conditions instead of comparing absolute values.
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