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A Neuronal Population Measure of Attention Predicts
Behavioral Performance on Individual Trials
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Visual attention improves perception for an attended location or feature and also modulates the responses of sensory neurons. In
laboratory studies, the sensory stimuli and task instructions are held constant within an attentional condition, but despite experimenters’
best efforts, attention likely varies from moment to moment. Because most previous studies have focused on single neurons, it has been
impossible to use neuronal responses to identify attentional fluctuations and determine whether these are associated with changes in
behavior. We show that an instantaneous measure of attention based on the responses of a modest number of neurons in area V4 of the
rhesus monkey (Macaca mulatta) can reliably predict large changes in an animal’s ability to perform a difficult psychophysical task.
Unexpectedly, this measure shows that the amount of attention allocated at any moment to locations in opposite hemifields is uncorre-
lated, suggesting that animals allocate attention to each stimulus independently rather than moving their attentional focus from one
location to another.

Introduction
The effects of cognitive processes on sensory representations are
typically studied by comparing psychophysical performance or
neural responses between sets of trials that differ only in their
instructions to the subject. Visual attention affects both behavior
and neural responses: when a subject directs attention to an area
of space, perception at that location is greatly improved com-
pared to blocks of trials when attention is directed elsewhere.
Attention also modulates the responses of sensory neurons, typ-
ically by increasing responses to attended stimuli (Assad, 2003;
Yantis and Serences, 2003; Reynolds and Chelazzi, 2004; Maunsell
and Treue, 2006).

Analyses that compare either mean perceptual performance
or mean neuronal responses between behavioral conditions im-
plicitly assume that subjects follow task instructions consistently,
making every trial within a task condition identical. Despite ex-
perimenters’ best efforts, however, a subject’s attentional state is
likely to vary, even within an attentional condition. These uncon-
trolled fluctuations in attention could have important conse-
quences for both perception and neuronal responses, and
understanding the effects of these fluctuations is critical for our
understanding of how attentional modulation of sensory re-
sponses leads to perceptual improvement.

Measuring uncued fluctuations in attention requires an esti-
mate of a subject’s attentional state on each trial, which has been
impractical using either behavioral or neuronal responses. Most

experiments measure behavioral performance as an average over
many trials. A single trial typically yields a single behavioral re-
sponse, which is not readily decomposed into contributions from
attentional state and behavioral capacity. Obtaining single trial
estimates of attention from the firing of sensory neurons has not
been approachable, because most electrophysiological studies
have recorded a single neuron at a time. While many previous
studies have shown a relationship between the responses of single
neurons and behavior (e.g., choice probability), those correla-
tions are typically weak (Parker and Newsome, 1998). A neuron’s
response on a single trial therefore cannot provide useful infor-
mation about an animal’s behavioral state. Consequently, while
previous studies have examined the relationship between neuro-
nal responses on individual trials and different behavioral out-
comes, they have not attempted to assess attentional fluctuations
on specific trials within a behavioral condition.

We found that basing a single trial measure of attention on a
few dozen simultaneously recorded neurons gave us the power to
accurately predict behavior. We showed that within a behavioral
condition, attention varies greatly from trial to trial, and these
fluctuations caused the monkey’s ability to detect a given small
change in a stimulus to vary from !70% correct to nearly com-
plete failure. Unexpectedly, this measure revealed that within a
behavioral condition, the amount of attention allocated to two
locations in opposite hemifields was uncorrelated, suggesting
that uncontrolled fluctuations in attention may result from fluc-
tuations in local groups of neurons rather than from a global
control signal.

Materials and Methods
Subjects and electrophysiological recordings. We recorded simultaneously
from dozens of neurons in both hemispheres of V4 in two rhesus mon-
keys (Macaca mulatta, both adult males, 9 and 12 kg) while they per-
formed a change– detection task in which we directed their attention to
one of two flashing stimuli. All procedures were approved by the Insti-
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tutional Animal Care and Use Committee of Harvard Medical School
(Boston, MA). Before behavioral training, each animal was implanted
with a head post and a scleral search coil for monitoring eye movements.
After the animal learned the behavioral task (3– 4 months), we implanted
a 6 " 8 array of microelectrodes (Blackrock Microsystems) in V4 in each
cerebral hemisphere (96 electrodes per animal). Each electrode was 1 mm
long, and the distance between adjacent electrodes was 400 !m. The two
arrays were connected to a percutaneous connector that allowed simul-
taneous recordings from all 96 electrodes.

We implanted the arrays between the lunate and superior temporal
sulci, which were visible during surgery. The centers of the spatial recep-
tive fields (RFs) for both monkeys were in the lower hemifield (eccen-
tricities for monkey 1: left hemifield: 3–5°, right hemifield: 5– 8°; monkey
2: left hemifield: 10 –15°, right hemifield: 15–30°). Monkey 2 underwent
an unscheduled explantation of both arrays before recordings began, so
we implanted new arrays several millimeters dorsal to the sites of the
original implants. Consequently, monkey 2 had more eccentric and more
dispersed receptive fields than monkey 1. The receptive field distribu-
tions were the only physiological results that were distinguishable be-
tween the two monkeys.

The data presented here are a superset of data presented previously
(Cohen and Maunsell, 2009). For the current study, it was important to
have a range of behavioral performance. Therefore, in addition to data
from 41 d of recording reported previously, we included eight additional
datasets in which the monkey did not achieve 90% correct on the easiest
orientation change (total 26 datasets from monkey 1 and 23 datasets
from monkey 2).

We recorded from a total 461 single neurons (235 from monkey 1 and
226 from monkey 2) and 4413 multiunits (1721 from monkey 1 and 2692
from monkey 2) over 49 d of recording. All spike sorting was done
manually offline using spike-sorting software (Plexon). Previously, we
found that the physiological effects of attention in single units were in-
distinguishable from those in multiunits (Cohen and Maunsell, 2009),
and the population analyses presented here required large populations of
neurons recorded simultaneously; thus, all analyses include both single
units and multiunits. On average, we recorded 46 single and multiunits
per hemisphere each day (range 14 –74). The chronic recordings provide
stable recordings over long periods, so we almost certainly recorded from
some of the same neurons on multiple days (Dickey et al., 2009). For this
reason, all of the key statistical comparisons are made within a recording
session, and we controlled for potentially nonindependent measure-
ments in the across-day analyses (see Fig. 1 D, E).

Behavioral task and visual stimuli. The monkeys performed an orien-
tation change detection task depicted in Figure 1 A. A trial began when
the monkey fixated a small white spot within a 1.5° square fixation win-
dow in the center of a video display (85 Hz frame rate, 1024 " 768 pixels,
gamma-corrected). Two achromatic, 100% contrast, odd-symmetric
Gabor stimuli, whose size, location, spatial frequency, and orientation
were optimized for one single unit in each hemisphere (new units and
stimuli each day), flashed on for 200 ms and off for a randomized period
(200 – 400 ms picked from a uniform distribution between each stimulus
presentation). In one unsignaled presentation, the orientation of one of
the stimuli was different from that of preceding stimuli, and the monkey
was given a liquid reward for making a saccade to the stimulus that
changed within 100 –500 ms of its appearance. To encourage the monkey
to maintain attention throughout the trial and to discourage guessing,
the time of the orientation change was drawn from an exponential dis-
tribution (minimum, 1000 ms; mean, 3000 ms; maximum, 5000 ms). If
no orientation change occurred within 5000 ms, the monkey was re-
warded for simply maintaining fixation, and the trial was excluded from
analysis. We found no dependence of behavioral performance on trial
length.

Because we observed some adaptation of neuronal responses between
the first and second stimulus presentations, the changed stimulus never
occurred before the third stimulus presentation. The mean neuronal
response was not significantly correlated with stimulus presentation
number for the second through last stimuli ( p # 0.21), and neuronal
responses to the second stimulus and the stimulus immediately preced-

ing the changed stimulus were not significantly different (paired t test on
all 4874 single and multiunits, p # 0.13).

We manipulated attention in blocks of trials by including 10 instruc-
tion trials before the start of each block. Instruction trials (which were
not analyzed) consisted of a single flashing Gabor stimulus. The stimulus
that appeared in the instruction trials was the one that changed orienta-
tion in 80% of trials in the upcoming block. To obtain reliable neuronal
and psychometric data at the orientation changes of interest and also to
keep the monkey’s reward rate sufficiently high, we used an unequal
number of trials at each difficulty level. Of 125 trials per block, 100
contained changes in the cued stimulus. The block also contained 25
changes in the uncued stimulus, which were all an orientation change of
a particular size. Within each block, the trial types were randomly inter-
leaved. Only one stimulus change occurred in each trial, and the monkey
was rewarded for correctly detecting a change in either stimulus regard-
less of cued location. Each analyzed dataset comprised at least four blocks
of trials in each attention condition (at least 1000 trials).

Importantly, the pair of stimuli presented immediately before the ori-
entation change was the same on every trial throughout an experimental
session, regardless of attentional location or the size of the eventual ori-
entation change. We were interested in a measure of attention on indi-
vidual trials that was independent of the visual stimulus or motor plan.
We therefore focused most analyses on the stimulus presentation imme-
diately before the orientation change because the stimuli were the same at
this point on every trial and because the monkey’s attentional state at this
time was likely to affect his ability to detect the upcoming change.

Analysis of psychophysical data. We defined percentage correct as the
number of correct detections divided by the number of correct detections
plus the number of missed changes. We fit behavioral data for stimulus
changes in the attended location (see Fig. 1) using a Weibull function,

p " 1 # e$! c
$" %

,

where p is the proportion of correct responses and c is the orientation
change in degrees. The parameter $ represents the orientation change at
which performance is 63% correct, and the parameter % controls the
slope of the curve. We did not analyze false alarms (eye movements to
one of the stimuli before an orientation change occurred) or trials in
which the monkey broke fixation by making an eye movement to a
location other than one of our two stimuli. False alarms occurred on 4%
of trials, and fixation breaks occurred on 5% of trials.

Attention is thought to primarily shift psychometric curves laterally
(Lu and Dosher, 1998; Lee et al., 1999; Carrasco et al., 2000; Cameron et
al., 2002), meaning that attending to a stimulus in this task can be con-
sidered to have a behavioral effect that is equivalent to increasing the size
of the orientation change (and thereby making the task easier). We quan-
tified the behavioral improvement caused by attention (Fig. 1) by finding
the point along the fitted Weibull function at which performance
matched the observed performance for orientation changes on the un-
cued side (Fig. 1 B, open symbols) and subtracting that orientation from
the size of the orientation change that was used on invalid trials. Shifts
were therefore positive when attention improved performance.

Trial types and time period used to calculate neural responses. Most
analyses were based on responses to the stimulus before the orientation
change because the stimuli were identical at that point on every trial (see Fig.
1A). For each single or multiunit we extracted spike counts from the period
between 60 and 260 ms after stimulus onset, which allowed for the la-
tency of visual responses in area V4. Some of the control analyses regard-
ing a putative decision or stimulus selectivity axis (see Figs. 4, 5) were
based on axes calculated using responses to the changed stimulus. For
these responses, we computed firing rates from spikes that occurred from
60 to 260 ms after that stimulus onset or until 60 ms before the saccade,
when that came before 260 ms (which was the case for 62% of trials). We
also tried the same analyses using only the period from 60 to 160 ms after
stimulus onset for all trials, and this did not qualitatively affect the results.
Responses for the fixation period (see Fig. 4 A) are based on spikes from
60 to 260 ms following the onset of fixation at the beginning of the trial.

The analyses of the effect of attention on behavior on single trials and
the modulation of single neurons (see Figs. 2– 6) were based on trials with
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a given orientation change for which psychophysical performance was in
a range where attention can have a large effect on performance. Attention
has the largest effect on the monkey’s ability to detect near-threshold
stimuli; stimuli that are far below the psychophysical threshold are un-
detected regardless of attentional state, and stimuli that are far above
threshold are always detected. Our analyses are restricted to trials of a
given difficult orientation change. Our goal was to select this change such
that average performance was close to 50% correct (the actual percentage
correct was 38% across all datasets). For this orientation change, the
attentional cue was always valid, meaning that the orientation change
always occurred at the attended stimulus. These trials comprised 16% of
the total trials and were randomly interleaved with other orientation
changes and invalid attentional cues.

Detect probability. Many of our analyses compare a single-trial mea-
sure of attention based on the response of the population of simulta-
neously recorded cells to behavioral performance (see Fig. 2). To
summarize the correlation between the population response and the
monkey’s performance, we calculated the area under the receiver oper-
ating characteristic (ROC) curve for the distributions of responses before
correct and missed detections. A similar measure has been used to quan-
tify the ability of an ideal observer to predict an animal’s behavioral
choice based on the responses of single sensory neurons to the changed
stimulus; this is termed detect probability (DP) for a detection task

(Cook and Maunsell, 2002) or choice probability for a discrimination
task (Britten et al., 1996; Dodd et al., 2001; Uka and DeAngelis, 2004;
Barberini et al., 2005; Liu and Newsome, 2005; Purushothaman and
Bradley, 2005; Uka et al., 2005; Nienborg and Cumming, 2006; Cohen
and Newsome, 2009; Nienborg and Cumming, 2009; Sasaki and Uka,
2009). Our metric differs from these others in that it is based on projec-
tions of the population response onto a specific attention axis (see Fig. 2)
rather than spike counts from single neurons. Also, we focused on re-
sponses to stimuli before the stimulus change, which is the period of
focus for attention studies. We refer to our metric as DPAA to emphasize
that the detect probability calculation is done on projections of the pop-
ulation responses onto the attention axis (AA).

We calculated DPAA by comparing distributions of projections of pop-
ulation responses for correct detections and missed changes in one stim-
ulus (these distributions for an example day of data are plotted in Fig.
2 B, C). The DPAA for a single day of data is the area under the ROC curve
comparing these two distributions, which corresponds to the probability
that an ideal observer could discriminate correct from missed trials based
on responses to the stimulus before the change (Green and Swets, 1966).
A value of DPAA greater than 0.5 corresponds to distributions in which
the mean projection for missed left changes was greater than $1, or that
for right changes was less than 1. Mean DPAA values in Figures 3 and 7
represent the average DPAA for all 49 datasets.

Figure 1. Over the course of a day, average attentional modulation of V4 neurons correlates with average improvement in behavior. A, Schematic of orientation change detection task. Two Gabor
stimuli synchronously flashed on for 200 ms and off for a randomized 200 – 400 ms period. At an unsignaled time, the orientation of one of the stimuli changed and the monkey was rewarded for
making a saccade to the stimulus that changed. Attention was cued in blocks, and the cue was valid on 80% of trials, meaning that on an “attend-left” block of trials (depicted here), 80% of
orientation changes were to the left stimulus. The monkey was rewarded for correctly detecting any change, even on the unattended side. Unless otherwise stated, all analyses were performed on
responses to the stimulus before the orientation change (black outlined panel). B, Psychometric performance from a typical example experiment on trials when the change occurred in the left
stimulus (left) or right stimulus (right). Proportion correct is plotted as a function of orientation change in degrees (deg) for trials in which the change occurred at the attended (filled circles) or
unattended (open circles) location. Unattended changes occurred only at the middle difficulty level. Error bars represent 95% confidence intervals (binomial statistics). Behavioral improvement was
quantified as the lateral shift in degrees between the measured performance when the change occurred at the unattended location and the Weibull fit of performance at the attended location. C,
Frequency histograms of attentional modulation indices of neurons from the example dataset whose receptive fields overlapped the left stimulus (left plot) or the right stimulus (right). Attentional
modulation index was defined as the difference between the average response to the stimulus before correct detections at the attended location and the unattended location, divided by the sum.
D, Average attentional modulation index as a function of behavioral shift (in degrees) for all 98 hemisphere days for each monkey (M1 and M2, circles and crosses, respectively) and receptive field
location (gray, left; black, right). E, Correlation coefficients between attentional modulation indices for two randomly selected groups of neurons within a hemisphere (black bar), the full groups of
neurons recorded in opposite hemispheres (white bar), and behavioral shift in the two hemifields (gray bar).

Cohen and Maunsell • Attention Predicts Behavior on Individual Trials J. Neurosci., November 10, 2010 • 30(45):15241–15253 • 15243



Results
Across days, average modulation of V4 neurons is strongly
correlated with behavioral improvement
As in previous studies (Assad, 2003; Yantis and Serences, 2003;
Reynolds and Chelazzi, 2004; Maunsell and Treue, 2006), we
found that attention both modulated individual neurons and
improved behavioral performance. Furthermore, the size of the
attentional effect on both neuronal responses and psychophysical
performance varied from experiment to experiment. Our simul-
taneous recordings from many neurons allowed us to see that the
variability in the mean neuronal modulation and the behavioral
improvement was correlated from day to day. In the example day
of data in Figure 1B, the behavioral improvement also differed in
the two hemifields: attention caused a larger improvement in
detection for the left stimulus (11.4° leftward shift of psychomet-
ric function, left plot) than for the right stimulus (3.6° leftward
shift, right plot). The average shift for all 98 hemisphere days was
7.6° (5.5° SD; mean for monkey 1: left RFs # 4.1°, right RFs #
7.3°; mean for monkey 2: left RFs # 7.5°, right RFs # 10.1°).

To determine whether the amount of behavioral improve-
ment was correlated with the average neuronal modulation
across experiments, we calculated an attention index for each
neuron based on its mean rates in each attention condition [(in $
out)/(in % out)]. As is often observed in single neuron studies,
there was considerable cell-to-cell variability in the attentional
indices within the populations of neurons in each hemisphere
(Fig. 1C). Nevertheless, the simultaneous recordings from popu-
lations of neurons allow us to see that like the behavioral im-
provement, the mean neuronal modulation differed between the
two hemispheres. The mean index for neurons with left hemifield
receptive fields was 0.10, which was significantly greater than the
mean index for neurons with right hemifield RFs (0.03; t test, p &
0.05). Therefore, for this example day of data, attentional modu-
lation was greater in neurons whose receptive fields overlapped
the stimulus that showed more behavioral improvement caused
by attention.

A relationship between neuronal and behavioral modulations
held throughout our 98 datasets (Fig. 1D; each data point corre-
sponds to one day of data for each hemisphere). The mean atten-
tional modulation for all neurons within a hemisphere and the
corresponding behavioral improvement were highly correlated
(Pearson’s correlation, r # 0.69, p & 10$9). The correlation was
not caused by differences in mean modulation or behavioral im-
provement between the two animals or different hemispheres,
because this correlation was present for each of the four hemi-
spheres (monkey 1: left hemisphere: r # 0.88, p & 10$7, right
hemisphere: r # 0.26, p & 0.05; monkey 2: left hemisphere: r #
0.89, p & 10$7, right hemisphere: r # 0.38, p & 0.01). Because we
likely recorded from some of the same neurons on consecutive
days, there is a potential concern that our measurements of at-
tentional modulation may not have been independent from day
to day. This turned out not to be the case, however; the average
attentional modulation in a given hemisphere was uncorrelated
with modulation on the following day (r # $0.06, p # 0.55). The
behavioral improvement caused by attention was also uncorre-
lated from day to day (r # 0.004, p # 0.97).

There are several possible sources of the day-to-day variability
in the effect of attention on both behavior and neuronal re-
sponses. Several factors in both the details of the experiment,
such as the size, location, orientation, and spatial frequency of the
visual stimuli, and in the monkey’s internal state, such as arousal
and motivation, varied from day to day. Consistent with previous

studies in V4 (Spitzer et al., 1988; Boudreau et al., 2006), we
found that average attentional modulation was higher when the
task was more difficult (as evidence by poorer psychometric
thresholds: correlation between mean attentional index and be-
havioral threshold in the attended condition was 0.37, p & 0.001;
correlation between behavioral improvement and behavioral
threshold was 0.34, p & 0.001).

Our results indicate that over the course of a recording ses-
sion, the average attentional modulation of the responses of a
population of V4 neurons is a good indicator of the expected
behavioral improvement. Although many previous studies have
shown that attention modulates individual neurons, the rela-
tionship between behavioral modulation and attentional
modulation of individual neurons is so weak (Pearson’s cor-
relation, r # 0.06 in our dataset) that it would not be a striking
feature of many single unit datasets (and may be statistically
indistinguishable from zero in small datasets). Our simulta-
neous recordings from an average of 46 neurons per hemi-
sphere per day allowed us to easily detect this strong
correlation between mean neuronal modulation of a popula-
tion and behavioral improvement.

As in the example day of data in Figure 1, B and C, we found
that both the behavioral improvement and the mean neuronal
modulation were often different in the two hemispheres. Across
our dataset, day-to-day fluctuations were independent across
hemispheres: the correlation coefficient for daily fluctuations in
mean neuronal modulation between the left and right hemi-
spheres was 0.09, which was not significantly different from zero
(Fig. 1E, white bar, p # 0.37). Correspondingly, the average be-
havioral improvements on the two sides were also uncorrelated
(Fig. 1E, gray bar, r # $0.01, p # 0.84). In contrast, when we
divided the neurons within a hemisphere randomly into two
groups, we found that the mean modulation indices of the two
groups were positively correlated (Fig. 1E, black bar, r # 0.47,
p & 0.01). Together, these results indicate that although modu-
lation varied from neuron to neuron, the average attentional
modulation of V4 neurons within a hemisphere is fairly consis-
tent and closely associated with improvement in behavior, and
that both neuronal modulation and behavioral modulation vary
independently across hemispheres and attentional locations.

Population responses accurately predict performance on a
trial-to-trial basis
The results in Figure 1 suggest that attention varies across exper-
iments and that the responses of a population of V4 neurons can
predict this variability. Across days, it is impossible to know the
origin of this variability, so it was necessary to look within a
day to see whether the relationship between the response of
the neuronal population and behavioral improvement held on
a trial-to-trial basis. We used the response of the population of
simultaneously recorded cells to try to isolate neuronal variability
caused by variability in attention.

We wanted to determine whether an estimate of attention
based on neuronal responses to the stimulus before the orienta-
tion change (the same time period used to calculate attentional
modulation in Fig. 1) could predict the monkey’s ability to cor-
rectly detect an upcoming change. We focused our analyses on
trials with a given difficult orientation change that occurred at the
cued location, for which all trials had valid attentional cues. The
average performance on these trials was 38% correct across all
datasets (total correct trials divided by total correct plus total
missed trials), which is in a range where attention can be the
difference between correct and incorrect trials.
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The goal of this analysis was to see whether we could use a
single trial metric of attention to do the following: (1) accurately
predict performance on the upcoming orientation change; (2)
determine whether, as predicted by the results in Figure 1E, vari-
ation in the amount of attention allocated to each spatial location
is independent; and (3) measure the dynamics of attentional al-
location. We estimated the monkey’s attentional state on a single
trial by quantifying the similarity of the population response
(generated from all simultaneously neurons recorded from both
cerebral hemispheres) to the stimulus immediately preceding the
orientation change on a given trial to the mean neuronal response
in each attention condition. Importantly, we were not looking for
an ideal decoder to distinguish between correct and incorrect
trials based on responses to the stimulus before the change.
Rather, we tested the hypothesis that a single-trial extension of
the traditional definition of attention (during the time period
typically used to calculate attentional modulation because it does
not have confounds from stimulus changes and motor prepara-
tion) could predict behavior.

The process for calculating our single trial measure of atten-
tion is schematized for a two-neuron example in Figure 2A. We
plotted the population response on each trial in an n-dimensional
space in which the response of each simultaneously recorded
neuron represented one dimension. Therefore, if we recorded 79
neurons in the two hemispheres combined, the population re-
sponse on each trial would be a point in a 79-dimensional space.
Both of the neurons in this example had receptive fields in the
right hemifield, and correspondingly they showed a mean in-
crease in firing rate when attention was directed toward the stim-
ulus on the right (difference between the Xs in Fig. 2A). However,
as shown by the scatter in the individual points, there is consid-
erable trial-to-trial variability in the responses of the two neu-
rons. Across attention conditions, this variability was correlated
(on trials when one neuron fired more than its average, the other
neuron was likely to fire more than its average).

To determine whether this neuronal variability was associated
with variability in behavior, we projected the population re-
sponse on each trial onto a putative “attention axis” connecting
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Figure 2. A single trial measure of attention based on population responses accurately predicts behavior. A, Procedure for calculating attentional allocation on a single trial. Analysis was restricted
to a single difficult orientation change (4.7°) for which attentional cues were always valid. For each trial, the number of spikes fired by n simultaneously recorded neurons during the stimulus before
an orientation change in the left hemifield (open circles) and right hemifield (filled circles) is plotted as a point in an n-dimensional space (a two-neuron example showing unusually large attention
effects is plotted here). The attention axis (black line) is the line connecting the center of mass of the n-dimensional cloud of points for correct trials at each attention/change location (Xs). Each point
(including missed trials) is projected onto the axis. The projections are scaled for each dataset so that a projection of $1 is equal to the mean response before correct left hemifield detections (left
X), and %1 is the mean before correct right hemifield detections (right X). B, Frequency histogram of population projections on trials with left changes for the same example day before correct
detections (upward bars) and missed changes (downward bars). Because of the way we normalized the distributions, the mean of the correct distribution is by definition$1. The mean of the missed
distribution is shifted toward the mean of the opposite attentional location. C, Same as B, for changes in the right hemifield. D, Frequency histogram of average projection on missed changes in the
left hemifield over all 49 d of data. Shaded bars indicate datasets for which the distribution of misses was shifted significantly toward the mean of the opposite attentional condition (t test, p &0.05).
E, Same as D, for right hemifield changes. F, Proportion correct detections as a function of population projection. For large negative projections, the proportion correct is high on left changes (dashed
line) and low on right changes (solid line). For large positive projections, percentage correct is high on right changes and low on left changes. Error bars represent SEM. Points are plotted for bins that
had &20 trials. G, Reaction time as a function of population projection. For large negative projections, reaction time is fast for left changes (dashed line) and slow for right changes (solid line).
Conventions are as in F.
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mean responses before correct detections in each attention con-
dition. Note that variability along this axis depends both on the
rates of each neuron and, importantly, on correlations between
neurons (Cohen and Maunsell, 2009). We normalized the scalar
projections for each day of data so that a projection of $1 was
equal to the mean response before correct detections of stimulus
changes on the left, and a projection of 1 was equal to the mean
response before a correctly detected change in the right hemi-
sphere. These projections are therefore a single trial extension of
the traditional neuronal definition of attention; rather than sim-
ply comparing mean responses in the two attention conditions,
each projection is a comparison of the population response on
that trial to those two means.

This measure allows us to test the hypothesis that variability
along this attention axis correlates with behavioral performance.
Because the axis was defined by mean responses on correct trials,
projections along the attention axis will differ for correct attend-
left and correct attend-right trials. The key comparison comes
from analyzing trials where the change was missed, which were
not used to define the axis. If position on the attention axis is not
correlated with behavior, projections for incorrect trials in a
given condition will be indistinguishable from those for correct
trials.

Instead, we found that that this putative metric of attention on
incorrect trials is consistently shifted toward the mean of the
opposite attention condition, indicating that missed detections
may in part be a result of improperly allocated attention. On 27%
of trials (3908 of 14,380 trials), the population projection was
closer to the mean projection for the incorrect than for the
correct attentional condition (i.e., projections on attend-left
trials were greater than zero, or projections on attend-right trials
were less than zero). On these trials, the monkey detected only
10% of orientation changes (401 of 3908 trials). In contrast, the
monkey detected 49% of changes in which the population pro-
jection was closer to the mean for the correct attentional condi-
tion (5101 of 10,472 trials).

Figure 2, B and C show that population projections for the
same example dataset as in Figure 1 were significantly different
before correct detections (upward bars) and missed changes
(downward bars). Because of the way we normalized the projec-
tions, the means of the distributions of projections for correct
trials were by definition $1 and 1 for left and right changes. We
found that, consistent with the hypothesis that variability along
the attention axis is correlated with behavior, the projections of
responses before missed trials in this dataset were shifted toward
the mean of the opposite attentional condition (mean for left
changes # $0.12, t test, p & 10$12; mean for right changes #
0.33, p & 10$6).

In nearly all of our 98 datasets, the distribution of projections
before missed changes were shifted toward the mean projection
for the opposite attentional condition (Fig. 2D,E) [mean projec-
tion for left changes was $0.53 over all 49 datasets, which is
significantly different from $1, t test, p & 10$8 (mean # $0.56
for monkey 1 and $0.51 for monkey 2); mean for right changes
was 0.16, which is significantly different from 1, p & 10$14

(mean # 0.16 for monkey 1 and 0.17 for monkey 2)], and this
difference was individually statistically significant for 86 of 98
hemifield days (88%; t tests, p & 0.05). The fact that projections
on missed trials were shifted toward to mean of the opposite
attention condition was not an artifact of regression to the mean;
when we defined the attention axis based on the mean projections
on missed trials, the distributions of projections on correct trials

were shifted away from the opposite attention condition on 81 of
98 datasets (83%).

The population projection provides a metric of attention on a
single trial that correlates strongly with the animal’s performance
(Fig. 2F). On trials in which the projection was large and negative
(near the mean for attend-left trials), the monkey did well detect-
ing upcoming changes on the left (Fig. 2F, solid line) and poorly
detecting changes on the right (Fig. 2F, dashed line). Conversely,
on trials in which the projection was large and positive (similar to
the mean of correct attend-right trials), the monkey correctly
detected most changes on the right but very few on the left. Thus,
while the overall performance was 38% correct on detecting the
difficult (4.7°) orientation change, performance varied from
nearly 0% correct to !70% correct depending on the amount of
attention allocated to the relevant location.

In addition to predicting whether or not the animal would
correctly detect the upcoming orientation change, the population
projection also predicted the monkey’s response time on correct
trials. Reaction times in our task were short and tightly clustered
(typically between 200 and 300 ms), leaving little variability to be
explained by fluctuations in attention. Even so, our population
projections predicted reaction time. On trials in which the pro-
jection was large and negative, reaction times tended to be fast for
changes on the left (Fig. 2G, solid line) and slow for changes on
the right (Fig. 2G, dashed line). Conversely, on trials in which the
projection was large and positive, reaction times were faster on
the right than on the left.

Dozens of simultaneously recorded neurons are necessary for
accurate estimates of attention
The population projections in Figure 2, which were calculated
using all simultaneously recorded neurons in each dataset,
showed substantial trial-to-trial variability within each attention
condition. Although our estimate of attention was based on rel-
atively few neurons (mean 79 neurons), this variability was cor-
related with behavior (Fig. 2). The correlation was imperfect,
however, leaving open two nonmutually exclusive possibilities:
(1) that behavior is affected by variable factors in addition to
attention; or (2) that our estimate of attention was noisy, perhaps
because we recorded too few neurons to isolate variability in
attention from other sources of neuronal variability. We next
examined how much of the trial-to-trial variability in our atten-
tional estimate was caused by measurement noise from using too
few neurons and how much was due to actual variability in the
animal’s attentional state.

The variability in the responses of a single neuron and the
relatively small effect of attention on its rate of firing make it
impractical to use responses from one cell to estimate attention
on a given trial. Figure 3A shows average firing rates for the stim-
ulus before the orientation change for all 4874 single and multi-
units separated by attention condition and behavioral outcome.
These means reflect the well documented attentional increase in
firing rates (Assad, 2003; Yantis and Serences, 2003; Reynolds and
Chelazzi, 2004; Maunsell and Treue, 2006); responses to stimuli
before correct detections were on average 8.6% higher when the
stimulus in the neuron’s receptive field was attended [Fig. 3A,
black bar, mean rate # 22.5 spikes per second (sp/s)] than when
it was unattended (mean rate # 20.7 sp/s; white bar). Individual
neurons also show modest modulation by behavioral outcome;
responses to stimuli before missed changes were on average be-
tween the responses on correct trials in the two attention condi-
tions (Fig. 3A, gray bars, mean rates on missed trials were 21.8
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sp/s and 21.0 sp/s when the stimulus was attended and unat-
tended, respectively).

The differences in the mean rates of our 4874 neurons be-
tween the attention conditions and behavioral outcomes mean
that on average, the responses of individual neurons carry some
information about attention that is predictive of behavior. How-
ever, the responses of any one neuron are so variable (the error
bars in Fig. 3A represent SD of the responses for the average
individual neuron) that any one neuron predictably carries much
less information about the animal’s attentional state on a single
trial than our population projections based on many simulta-

neously recorded neurons. We quantified
our ability to predict behavior based on
different numbers of simultaneously re-
corded neurons by calculating the pop-
ulation detect probability, DPAA (see
Materials and Methods) (Fig. 3B). A
population DPAA of 0.5 would mean
that the population projections are un-
correlated with behavior, while DPAA

values near 1 would mean that this esti-
mate of attention predicts behavior
nearly perfectly. The mean DP for indi-
vidual neurons was 0.503, meaning that
the fluctuations in the responses of indi-
vidual neurons to the stimulus before the
orientation change are very weakly corre-
lated with behavior. [Note that, as in pre-
vious studies (Parker and Newsome,
1998; Cook and Maunsell, 2002), the re-
sponses of individual neurons to the
changed stimulus are more highly corre-
lated with behavior; our mean detect
probability for that period was 0.528.]

We explored the effect of population
size on our ability to predict behavioral
outcomes by analyzing subsets that con-
tained a specific number of neurons
drawn randomly from our datasets. Pop-
ulation DPAA increases monotonically
with the number of neurons used to cal-
culate the attention axis and the projec-
tions onto it and appeared to approach an
asymptote when we included all simulta-
neously recorded cells (Fig. 3B, rightmost
point, mean # 79 neurons).

At asymptote, the variability in the
population projections should be caused
by actual trial-to-trial variability in the an-
imal’s attentional state rather than mea-
surement noise resulting from our
inability to record enough neurons to ac-
curately estimate attention on an individ-
ual trial. To estimate the relative
contributions of attentional fluctuations
and measurement noise to the fluctua-
tions in population projections we ob-
served, we calculated the SD of the
distribution of population projections as a
function of the number of neurons used
to calculate the projections (Fig. 3C). As in
the analyses in Figure 2, projections onto
the attention axis were normalized such

that the mean for attend-left trials was $1, and the mean for
attend-right trials was %1. Because the difference in mean rates
was small or nonexistent for small numbers of neurons, the
variability in attention axis projections is dominated by the
variability of individual cells for small population sizes, lead-
ing to distributions with enormous SDs (Fig. 3C, left side). As
the number of neurons increased, the SD appears to approach
an asymptote. The distribution of projections using the full
datasets (Fig. 3C, right point) had an SD of 0.90.

If the variability in the distribution of projections reflects fluc-
tuations in attention rather than measurement noise, this large

Figure 3. Moderate neuronal populations are necessary for precise estimates of attention. A, Mean firing rate responses to the
stimulus before the orientation change for each individual neuron (single and multiunits) in each combination of attentional
condition and behavioral outcome. Error bars represent average SD of firing rates for individual neurons. The variability of individ-
ual neurons makes it impractical to use their responses to reliably predict attentional state and behavioral outcome on individual
trials. B, Population DPAA as a function of the number of neurons used to calculate population projections. The point at the right
represents mean population DPAA using projections based on all simultaneously recorded neurons for each dataset (mean, 79
neurons). C, Standard deviation of the distribution of population projections as a function of the number of neurons used to
calculate the projection. At asymptote, this measure represents actual variability in attention rather than measurement noise. The
gray line represents the theoretical asymptote (using the procedure depicted in D). Axes are plotted on a log scale to illustrate the
dramatic reduction in SD that comes from adding even a few neurons to small population sizes (left side of the plot). Other
conventions are as in B. D, Procedure for determining the amount of variability along the attention axis that could be caused by
measurement noise. To test the hypothesis that all of the observed variance in the distribution of projections along the attention
axis is caused by measurement noise, we assumed that attentional state is binary and that performance is at a fixed level for a given
attentional state (a step function, dashed line). We fit the function relating proportion correct to attention axis projection with a
cumulative Gaussian with fitted bounds (solid line; mean 0.45, SD 0.47, lower bound 0.07, upper bound 0.70). This fitted Gaussian
(dotted line; height of the Gaussian is arbitrary) places an upper bound on the amount of variance that can be caused by measure-
ment noise (fitted variance # 0.22), leaving a minimum variance of 0.59 (SD # 0.77) to be explained by true variability along the
attention axis. This theoretical asymptote of variance in attentional state that cannot be explained by measurement noise is the
gray line plotted in C.
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SD implies that spontaneous fluctuations
in attention within a task condition can
span a large range, comparable to the av-
erage effect of shifting attention between
the two stimuli in our task. To confirm
that this SD is not dominated by measure-
ment noise, we used the procedure de-
picted in Figure 3D to quantify the
maximum component of this SD that
could be caused by measurement noise.
Figure 2F shows that behavioral perfor-
mance increases monotonically with in-
creased attention. These same data have
been replotted in Figure 3D after flipping
values from one condition so that a pro-
jection of 1 always corresponds to the
mean population response on correct tri-
als with attention directed toward the lo-
cation of the stimulus change. We then
combined behavior from both attention
conditions. The solid line is the best fitting
cumulative Gaussian function.

One extreme possible relationship be-
tween attention and behavior is that be-
havior is a step function of attention,
falling at one of two performance levels
depending on the locus of attention (Fig.
3D, dashed line step function). This could
only occur if there was no noise in the
processes that link behavior and atten-
tional state. In this extreme formulation,
the deviation of the measured behavior–
projection function (Fig. 3D, solid line)
from a step function (dashed line) de-
pends only on the measurement noise.
Specifically, as noise in the measurements
of position on the attention axis grows
larger, the behavior–projection function
becomes less steep. Thus, the steepness of
the behavior–performance function places
an upper limit on noise in measuring posi-
tion on the attention axis. Making the as-
sumption of an underlying step function
places an upper limit on measurement
noise, because a step function has the largest
possible difference from the measured be-
havior–projection function.

To explore this limit, we fit a cumulative
Gaussian to the actual plot of psychometric
performance as a function of projection
onto the attention axis. The fitted Gaussian
(Fig. 3D, dotted line) had an SD of 0.47,
which is substantially lower than the mea-
sured SD of 0.90. If the noise in measuring
position on the attention axis were broader
than this, the psychometric function would
have had to be flatter, even if behavioral per-
formance was a perfect step function of po-
sition on the attention axis.

A maximum SD of measurement noise of 0.47 corresponds to
a maximum variance of 0.22. Because the measured variance of
position on the attention axis is 0.81 (SD 0.90), the remaining vari-
ance must be accounted for by actual variability along the attention

axis that is related to psychophysical performance. This amounts to a
minimum variance of 0.59 or an SD of 0.7. Our measured SD of the
distribution of attention axis projections (0.90) is close to this theo-
retical asymptote (Fig. 3C, gray line). This observation, combined
with the strong relationship between projections onto the atten-

Figure 4. Modulation of the mean responses of individual neurons. A, Mean responses (in sp/s) of all simultaneously recorded
neurons from an example dataset on trials in which a 4.7° change occurred in the stimulus in the left hemifield (validly cued trials
only) during the stimulus immediately preceding the change (previous) as function of responses during the initial fixation period
at the start of the trial (fixation). The responses of neurons in the left hemisphere (whose receptive fields do not overlap the
attended stimulus) are represented with open circles, and responses of neurons in the right hemispheres are represented with
filled circles. B, Mean responses to the changed stimulus as a function of responses to the previous stimulus. Trials and conventions
are as in A. C, Responses to the previous stimulus as a function of behavioral outcome. Trials and conventions are as in A. D, Mean
responses to the previous stimulus as a function of attention condition. The x-axis is as in B. The y-axis represents mean
responses on trials with a 4.7° change in the right hemisphere (validly cued trials only). Plotting conventions are as in A. E,
Frequency histogram of attention modulation (mean response to the previous stimulus on attend left minus attend right
trials) for neurons in the right (top) and left (bottom) hemispheres. This mean attention modulation is used to construct the
attention axis. F, Stimulus modulation (mean response to the changed minus the previous stimulus) as a function of
attention modulation (same x-axis as in E).

15248 • J. Neurosci., November 10, 2010 • 30(45):15241–15253 Cohen and Maunsell • Attention Predicts Behavior on Individual Trials



tion axis and behavior (Fig. 2F,G), suggests that the variability in
projections using the full datasets is dominated by actual variabil-
ity in attention rather than measurement noise.

Behavior correlates with fluctuations in attention rather than
other sources of variability
We showed that projections of population responses onto the
putative attention axis accurately predict the monkey’s perfor-
mance (Figs. 2, 3). This axis, defined as the line joining the mean
population responses to identical stimuli in the two different
attention conditions, is a neuronal population extension of the
classical definition of attention, so it seems likely that variability
along the attention axis corresponds to variability in attention.
However, it is possible that variability along another axis in the
population activity space is even more tightly correlated with
behavior. If this other axis was similar to the attention axis, cor-
relations between projections along the attention axis and perfor-
mance (such as those in Figs. 2 and 3) could occur simply by
association. We therefore did additional analyses that show that
the attention axis predicts behavior much more reliably than
candidate alternative axes.

To get a sense of how attentional modulation of individual
neurons covaries with modulation by different factors, we com-
pared measures of the responses of all of the simultaneously re-
corded neurons in each dataset in several periods and task
conditions (Fig. 4, an example dataset). The attention axis is con-
structed from responses from all simultaneously recorded neu-
rons in the two hemispheres combined, which allows us to
separate effects of attention from global factors such as alertness
or arousal, but the hemisphere from which each neuron was re-
corded is identified for clarity (Fig. 4, filled and open points). In
general, individual neurons responded more during stimulus
presentations than they did when the animal fixated a blank
screen at the start of the trial (Fig. 4A). Neurons whose receptive
fields were in the same hemifield as the stimulus that changed
tended have higher responses to the changed than the previous
stimulus; this was presumably caused by a release of adaptation to
the repeating stimulus (Fig. 4B). The similarity in individual neu-

rons’ mean responses to the previous
stimulus in the two behavioral outcomes
(Fig. 4C) further illustrate the point that
dozens of simultaneously recorded neu-
rons are necessary to predict performance
on individual trials (see also Fig. 3). As
expected, neurons in the right hemisphere
tended to respond more strongly when at-
tention was directed to the left (Fig. 4D) and
vice versa, but the modulation of individual
neurons was modest, averaging 1.87 sp/s or
0.37 spikes per 200 ms stimulus presenta-
tion for this example dataset. The distribu-
tions of attentional modulation for
neurons in the right (top histogram) and
left (bottom histogram) hemispheres are
shown in Figure 4E.

We first considered whether an axis that
captures stimulus or decision-related vari-
ability that might be useful for computing a
perceptual decision in this task could pre-
dict behavior as reliably as the attention axis.
The monkey’s task is to discriminate the
new changed stimulus from the previous
stimulus, so the monkey might compare the

population response to the changed stimulus with the response to
the previous stimulus. If so, responses to the previous stimulus
that differ more from population responses to the change might
be more discriminable than responses that are more similar to the
change. Such a stimulus/decision axis would be qualitatively dif-
ferent than an attention axis, because attention modulation was
not well correlated with decision modulation (Fig. 4F).

To directly compare the importance on a population level of
stimulus/decision versus attentional modulation of responses to
the previous stimulus in predicting performance, we repeated the
analyses in Figure 2 of the subpopulation of neurons for which
the attentional index and stimulus modulation index were of
opposite sign (e.g., neurons that responded more strongly to at-
tended than unattended stimuli but more weakly to the changed
stimulus than the previous stimulus, or vice versa). We defined
an attention axis for this subpopulation of neurons (average 31 of
92 neurons per dataset) and looked at projections for missed
trials just as we did in Figure 2. For these neurons, if attentional
modulation was more important than stimulus modulation in
predicting performance, projections before missed detections
would be shifted toward the opposite attentional location (as in
Fig. 2). If, however, stimulus modulation was more important,
projections before missed detections would be shifted away from
the opposite attentional location.

Figure 5 shows that for nearly every dataset, projections were
shifted toward the opposite attentional condition [the mean of
the distribution of average projections was $0.45 for misses in
the left hemifield, which is significantly greater than $1, the
mean for correct trials in the left hemifield (t test, p & 10$9); the
mean was 0.19 for misses in the right hemifield, which is signifi-
cantly less than 1, the mean for correct trials in the right hemifield
( p & 10$17)]. These results indicate that attentional modulation
is more important for predicting performance based on re-
sponses before the change than stimulus modulation.

We also tested the effectiveness of a putative decision-
selectivity or stimulus-selectivity axis in predicting performance
based on responses to the previous stimulus by repeating the
analyses in Figure 2 for this new axis (constructed using all neu-
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Figure 5. Variability in attention, not bottom-up responses, is correlated with behavior. A, Average projection of population
responses to the stimulus preceding a missed orientation change in the left hemifield for subpopulations of neurons whose
attentional indices and stimulus tuning indices are of the opposite sign. The mean of the distribution is shifted toward the mean of
the opposite attentional condition, suggesting that missed changes result from improperly allocated attention (see Results).
Conventions are as in Figure 2, D and E. B, Same as A for changes in the right hemifield.
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rons). This axis is a population extension of the axis that is im-
plicitly used to calculate choice or detect probability from
responses to the changed stimulus. Rather than defining the axis
based on the mean response to the previous stimulus in the two
attention conditions, we defined two separate decision axes, one
for changes on the left and one for changes on the right. The
decision axis for a given attention condition was the one that
joined the mean response to the previous stimulus and the
changed stimulus in that attention condition [these are the same
axes used to calculate discriminability by Cohen and Maunsell
(2009)]. We then calculated projections of population responses
to the previous stimulus onto the decision axis and quantified the
relationship between these projections and behavioral perfor-
mance by calculating the population DP for changes in each
hemifield. The population DP was lower for the decision axis
than for an attention axis calculated separately for each hemifield
(average DPAA # 0.62 and 0.58 for the decision axis versus 0.72
and 0.83 for the attention axis for left and right changes, re-
spectively; t tests, p & 10$4 for left changes and 10$9 for right
changes). In contrast, projections of responses to the changed
stimulus onto the decision axis predict behavior very accurately
(population detect probability along the decision axis during the
changed stimulus # 0.76 and 0.84 for left and right changes,
respectively).

We therefore have two lines of evidence suggesting that be-
havior correlates with variability in responses to the stimulus
before the change along an attention axis rather than a stimulus
or decision axis. First, behavior correlates with projections along
the attention and not with the decision axis for subpopulations of
neurons for which the two axes give opposite predictions. Sec-
ond, population DP for the full population is lower along the
decision axis than along the attention axis. Together, these anal-
yses suggest that the correlations between projections along the
attention axis and behavior (Figs. 2, 3) are not caused by variabil-
ity along a stimulus or decision axis.

Another possibility is that the variability we observed along
the attention axis arose from variability in global factors such as
arousal or alertness. This seems unlikely, because the attention
axis is constructed using responses from all simultaneously re-
corded neurons in the two hemispheres combined, and average
attentional modulation tends to affect the two hemispheres in
opposite ways. Neurons with receptive fields in the left hemifield
tend to have higher firing rates in the attend-left than the attend-
right condition, and the opposite is true for neurons whose re-
ceptive fields are in the right hemifield. In contrast, global factors
should modulate all neurons in the same way, so an arousal axis
should be orthogonal to the attention axis. To test this directly,
we computed projections onto a response axis (from the origin to
the mean response to the previous stimulus) and found that pop-
ulation DP along the response axis was not significantly different
from chance for either hemifield (average DP # 0.51, t test, p #
0.16 for left changes; DP # 0.50, p # 0.34 for right changes).
These results, combined with the above investigation of the deci-
sion axis, suggest that the variability we observed along our atten-
tion axis in fact represented variability in the amount of attention
allocated to each location.

Within an attentional condition, the amount of attention
allocated to the two stimuli is independent
The ability to measure attention on a single trial is important in
part because it can remove variance from measurements of how
attention affects behavioral and neuronal performance and pro-
vide insights into the mechanisms of attention. We used the pop-

ulation projections in Figure 2 to probe the limits on an animal’s
ability to monitor multiple stimuli simultaneously. One possibil-
ity is that an animal can attend to only one stimulus at a time and
needs to switch attention between them. This idea is embodied in
the metaphor of an attentional “spotlight” (Posner et al., 1980;
Eriksen and Yeh, 1985; Eriksen and St James, 1986; Posner, 1987,
1994), which suggests that attention is a limited resource that can
be directed to a specific location or small set of locations (Stark et
al., 1997; Müller and Hubner, 2002; Müller et al., 2003). In our
task, the prediction of this metaphor is that directing attention to
one stimulus decreases attention to the other stimulus. Alter-
nately, an animal may partition either a fixed or variable amount
of attention to two stimuli independently.

Across blocks of trials, an anticorrelation between the two
attentional conditions in our task is imposed by the structure of
most psychophysical tasks, including ours. The definition of at-
tention requires that shifting attention from one location to an-
other will improve behavioral performance at the newly attended
location and reduced performance at the other. If a single mech-
anism determines the cued, blockwise effects and the trial-to-trial
fluctuations we observed, then the trial-to-trial fluctuations should
similarly show an anticorrelation between the two stimulus repre-
sentations. Our single trial measure of attention allows us to deter-
mine whether such an anticorrelation exists. Using the same method
depicted in Figure 2A, we defined attention axes for the subpopula-
tions of neurons in each hemisphere separately. Therefore, on each
trial we obtained two population projections, one from the popula-
tion of neurons in each hemisphere. We investigated whether in-
creasing attention at one location decreases attention to the other
within an attention condition by computing the correlation co-
efficient between the trial-to-trial variability in the population
projections for the two hemispheres in that condition.

Surprisingly, we found that the correlation between the pop-
ulation projections for the two hemispheres was statistically in-
distinguishable from zero for each change location and trial
outcome (Fig. 6, white bars). In contrast, when we randomly divided
the neurons within a hemisphere into two groups and calculated a
population projection for each group, the correlation coefficient be-
tween projections for the two groups within a hemisphere was sig-
nificantly greater than zero for all four conditions (Fig. 6, black bars),
showing that the population projection method has the statistical

Within hemisphere

Across hemispheres

cor L cor R miss L miss R
0

0.5

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Figure 6. Fluctuations in attention allocated to the two hemispheres are independent. Cor-
relation coefficient between population projections of randomly chosen subsets of neurons
within a hemisphere (black bars) and all neurons across hemispheres (white bars) for the four
combinations of attention conditions and trial outcomes. For all four combinations, the corre-
lation coefficient was statistically greater than zero for the same hemisphere projections and
indistinguishable from zero ( p ' 0.5) for opposite hemisphere projections. R, Right; L, left; cor,
correct detections; miss, missed changes.
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power to detect a consistent amount of attention directed to the joint
receptive fields of neurons within a hemisphere.

Consistent with the independence of the two hemispheres, we
found that including neurons from the hemisphere opposite the
change was only slightly useful in predicting the monkey’s per-
formance. The population DPAA for the attention axis based on
all simultaneously recorded neurons in both hemispheres (Fig. 2)
was 0.75 for changes in the left hemifield and 0.81 for the right
hemifield. Our ability to predict behavior using projections on the
attention axis was only slightly diminished by using only neurons
whose receptive fields were in the same hemifield as the changed
stimulus (DPAA # 0.71 and 0.77 for the left and right hemifields,
respectively, which was significantly different from 0.75 and 0.81,
p & 0.01 for both comparisons). Our ability to predict behavior
based only on the responses of neurons whose receptive fields were
in the opposite hemifield as the changed stimulus was significantly
greater than chance, but much lower when using the neurons whose
receptive fields overlapped the changed stimulus (DPAA # 0.58 and
0.54 for changes in the left and right hemifields, respectively). These
results indicate that, consistent with the observation that projections
for the two hemispheres were independent (Fig. 6), neurons whose
receptive fields are in the opposite hemifield as a visual stimulus do
not provide very much information about the amount of attention
directed to that stimulus.

Dynamics of attention
The ability to estimate attention on a single trial also allows us to
investigate the dynamics with which attention to a given location
varies. We used the population DPAA measure to summarize the
relationship between population projections at a given time and the
animal’s future performance. These analyses use a somewhat differ-
ent set of trials and stimuli than the analyses in Figure 2–6; we used
responses to all stimuli before an orientation change except the first
stimulus of the trial (Fig. 7A), the stimulus immediately before the
change on all correctly completed trials, regardless of the eventual
orientation change (Fig. 7B), or the stimulus immediately before
the change on the single orientation change used in the other
analyses (Fig. 7C). All responses were projected onto a single
attention axis computed using the stimulus immediately before
the change as usual.

Overall, we found that attention varies somewhat from one stim-
ulus presentation to the next (on a timescale of a few hundred mil-
liseconds), but a component of attentional allocation varies much
more slowly. Between the first and second stimuli preceding the
change, the population DPAA drops significantly from 0.78 to 0.64
(Fig. 7A; t test, p & 0.01), meaning that attention varies appreciably
on the timescale of a single stimulus. These quick shifts in attention
mean that attention likely varies somewhat between the stimulus
before the change (when we measured responses) and the changed
stimulus to which the monkey responds. Therefore, even if we could
record from an arbitrarily large number of cells, information about
the animal’s attention state measured during the stimulus before the
change may never allow us to predict responses to the changed stim-
ulus perfectly (DPAA may never reach 1).

In addition to variability on the timescale of individual stim-
uli, a component of attentional allocation varies more slowly;
DPAA was fairly constant between the second and fifth stimuli
before the change (no DPAAs were significantly different, paired t
tests, p ' 0.05) and remains significantly greater than 0.5 until at
least 10 trials before the current trial (Fig. 7B). This attentional allo-
cation does not appear to reflect the animal increasingly attending to
the cued side over successive trials within a block, as we did not
observe consistent changes across a block in either the average DPAA

(Fig. 7C) or the average raw population projection (slope of the best
fit line # 0.001, which is not significantly different from 0, p # 0.41).

Discussion
A fundamental question in systems neuroscience is how popula-
tions of neurons encode sensory stimuli and guide behavior. In
the laboratory, this question is often addressed by analyzing the
average response of a single neuron to many ostensibly identical
trials. A major assumption of this approach is that all trials within
a condition are the same, but we show here that attention varies
considerably from trial to trial and that this variability has impor-
tant behavioral consequences. Our results suggest that studying
moderate-sized populations of neurons instead of single neurons
may yield important insights about how behavior is controlled.
Our study focused on the relationship between a single-trial mea-
sure of attention and psychophysical performance. In the future,
studies of moment-to-moment variability in neuronal popula-
tions in other brain areas, time periods, and tasks may reveal how
populations of neurons guide other aspects of behavior.

The ability to measure attention on a single trial is important
in part because it can remove variance from measurements of
how attention affects behavioral and neuronal performance and
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Figure 7. Dynamics of attention. A, Population DPAA as a function of number of stimuli
before the change. Error bars represent SEM. B, Same as in A, as a function of number of trials
before the current trial (based on the stimulus before the change in each trial). C, Population
DPAA as a function of trial number within an attentional block.
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provide insights into the mechanisms of attention. Here, we were
able to use this metric to probe the limits on an animal’s ability to
monitor multiple stimuli simultaneously. One possibility is that
an animal can attend to only one stimulus at a time and needs to
switch attention between them. This idea is embodied in the
metaphor of an attentional spotlight (Posner et al., 1980; Eriksen
and Yeh, 1985; Eriksen and St James, 1986; Posner, 1987, 1994),
which suggests that attention is a limited resource that can be
directed to a specific location or small set of locations (Stark et al.,
1997; Müller and Hubner, 2002; Müller et al., 2003). Alternately,
an animal may partition either a fixed or variable amount of
attention to two stimuli independently.

Unexpectedly, we found that within an attentional condition
the amount of attention allocated to each hemifield is indepen-
dent (Fig. 6). This result was somewhat surprising, because the
structure of our task imposed a blockwise anticorrelation in both
behavior and neuronal modulation; on blocks of trials in which
attention was directed to the left stimulus, it was directed away
from the right. The mean neuronal modulation reflects this an-
ticorrelation. Attention typically increases firing rates (attention
indices are on average positive) (Fig. 1,D,E); thus, on attend-left
blocks of trials, firing rates in the right hemisphere typically in-
creased while responses in the left hemisphere decreased. How-
ever, our analysis of population projections (Fig. 2) shows that
attention varies from trial to trial and that this variability affects
behavior but shows no sign of blockwise anticorrelation.

The lack of anticorrelation between the population projec-
tions suggests that within-block variability is not attributable to
errors in remembering the attention condition of the current
block of trials, which would have produced a measurable anticor-
relation. Instead, our results suggest that the variability came
from retinotopically local processes that control attention to each
stimulus. The fact that the monkey did not make many errors in
block identification is unsurprising because discriminating the
attention conditions was easy; there were only two attention con-
ditions, the blocks were long (125 trials), and each block was
preceded by 10 instruction trials that served as attentional cues
(see Materials and Methods). Instead, variability in attention was
local to each stimulus location.

Thus, while attention may have an average effect that appears
like a movable spotlight, within a trial there is no evidence that
increases in one representation are tied to decreases at another.
This result is consistent with the psychophysical finding that observ-
ers’ ability to attend to a stimulus is unaffected by attending to a
second stimulus in the opposite hemifield (Alvarez and Cavanagh,
2005). When the two stimuli are in opposite hemifields, attention
appears less like a spotlight and more like a filter that independently
adjusts the strength of neuronal responses at different retinotopic
locations to reflect the behavioral significance of those locations. Our
results suggest that attention may flexibly weight each part of the
visual scene according to its current behavioral relevance.

We did not find that trial-to-trial fluctuations in attention
acted through a mechanism like a spotlight in which a unitary,
top-down input modulated populations of V4 neurons in both
hemispheres in a push–pull fashion. Such top-down input would
be expected to produce anticorrelation in the fluctuations in the
activity of pairs of V4 neurons in opposite hemispheres (noise
correlations), which are thought to reflect common inputs to the
pair of neurons. Noise correlations in neurons with overlapping
receptive fields are typically positive (Gawne and Richmond,
1993; Gawne et al., 1996; Reich et al., 2001; Kohn and Smith,
2005; Cohen and Newsome, 2008; Smith and Kohn, 2008; Thiele
and Hoffmann, 2008; Cohen and Maunsell, 2009; Mitchell et al.,

2009; Poort and Roelfsema, 2009), and these correlations are
modulated by attention (Cohen and Maunsell, 2009; Mitchell et
al., 2009). In contrast, fluctuations in the responses of V4 neurons
in opposite hemispheres are independent (Cohen and Maunsell,
2009). This result, along with the observations that population pro-
jections in the two hemispheres are independent and that neurons
whose receptive fields are in the opposite hemifield do not predict
the amount of attention allocated to a given stimulus, suggests that
trial-to-trial fluctuations in attention to each of the two stimulus
locations in our task is governed not by a single top-down control
mechanism but by separate groups of neurons whose variability is
independent. It is possible that the blockwise anticorrelation that is
invariably observed reflects the opposing actions of these indepen-
dent mechanisms rather than a mechanism with an obligatory push–
pull action on different retinotopic representations.

Our physiological results, as well as this view of attention as
governed by local populations of neurons, are consistent with a
recent theory that attention depends on the same mechanisms
that underlie divisive normalization (Boynton, 2009; Lee and
Maunsell, 2009; Reynolds and Heeger, 2009). Neurons with over-
lapping receptive fields likely share a normalization pool, result-
ing in consistent attentional allocation to a given stimulus (Fig.
3). In contrast, neurons in opposite hemispheres probably have
independent normalization pools, leading to independent trial-
to-trial fluctuations in attention between hemispheres.

We showed that the responses of modestly sized populations
of sensory neurons can reliably predict psychophysical perfor-
mance a short time later. In future studies, this approach may allow
experimenters to associate the single-trial responses of neural popu-
lations in other cortical areas mediating other aspects of behavior,
thus enhancing our understanding of the role of different areas in
guiding behavior. Our results in particular suggest that the most
simple view of attention as a single, top-down entity is likely incor-
rect, and that, like many cortical processes, variability in the amount
of psychophysical improvement caused by attention can be ex-
plained by the variability of local populations of neurons.
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