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et al.’s series of tests. If the deficit

depended on the need to learn from iden-

tity prediction errors, behavior should now

be impervious to cholinergic interventions

in the pDMS, since all three manipulations

would involve value as well as identity

prediction errors. If, on the other hand,

the problem was one of retrieval, then

the rats’ responding should still reflect

the erroneous association of both levers

with both outcomes, with response rates

postreversal evidencing similar predic-

tions for both levers. Of course, single

unit recordings would still be useful for

understanding the relationship between

either of these roles and the precise

firing patterns of the neurons, as well as

the dynamics of learning in the striatal
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network that gives rise to these func-

tions (and associated deficits). How-

ever, it is always inspiring to see well-

controlled behavioral designs reveal

underlying neural processes, even absent

electrodes.
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Hohl et al. (2013) found that fluctuations in neuronal responses in the middle temporal area (MT) are corre-
lated with variability in smooth pursuit eye movements. The pattern of neuron-behavior correlations con-
strainsmodels of how sensory neurons guide behavior and establishes pursuit as an attractivemodel system
for studying how sensory neurons guide behavior.
The way humans and animals respond to

any sensory stimulus is unreliable. For

example, an animal being pursued by a

predator might sometimes run away and

might other times lie still and hide. Some

of this behavioral variability might come

from variability in the way sensory stimuli

are encoded in the brain. Neuronal

responses are also variable: a given

neuron in visual cortex, for example, will

respond differently each time an animal

views the same visual stimulus.

Over the past two decades, experi-

menters have capitalized on this vari-

ability to establish a link between the

activity of neurons in different brain areas

and specific behaviors. The earliest such

study measured the relationship between

motion-direction-selective neurons in the

middle temporal area (MT) and monkeys’
decisions in a motion-direction discrimi-

nation task that required the animals to

determine in which of two opposite direc-

tions a random dot stimulus was moving

(Britten et al., 1996). On repeated presen-

tations of an identical stimulus, fluctua-

tions in the activity of single MT neurons

were weakly but consistently correlated

with the monkeys’ decisions. On trials in

which a neuron tuned for upward motion

fired more than its average, the monkey

was more likely to report seeing upward

than downward motion.

Since that initial study, correlations be-

tween the fluctuations in the responses of

individual neurons and behavior (typically

called choice probability for discrimina-

tion tasks or detect probability for detec-

tion tasks) have been observed in a vari-

ety of sensory areas and behavioral
tasks (for review, see Nienborg et al.,

2012; Parker and Newsome, 1998). The

existence of such neuron-behavior corre-

lations, when combined with data from

more causal experimental methods like

pharmacology, lesions, or electrical stim-

ulation, can provide evidence that those

neurons are part of the neural mecha-

nisms underlying specific percepts or be-

haviors (Parker and Newsome, 1998).

Using neuron-behavior correlations (or

other experimental methods) to infer the

computation that downstream areas

perform to decode sensory information

from areas like MT has been much more

difficult, however. This difficulty has at

least three sources. (1) The relationship

between any one neuron’s activity and

behavior is typically weak and noisy. This

is expected because a large number of
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Figure 1. Smooth Pursuit EyeMovements, Unlike Responses in Discrimination, Differentiate
between Similar Visual Stimuli
(A) Simulated responses of a population of MT neurons to stimuli moving upward at medium speed (left
panel), slightly to the right of upward at low speed (middle panel), or slightly to the left of upward at
high speed (right panel).
(B) In the direction discrimination task of Britten and colleagues (1996), behavioral responses to all three
stimuli would be identical upward eye movements.
(C) In the smooth pursuit task of Hohl et al. (2013), behavioral responses differentiate between the stimuli,
providing richer behavioral measurements with which to compare MT responses.
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neurons in multiple brain areas likely

contribute to any behavior, but it makes

neuron-behavior correlations difficult to

measure and interpret. (2) Neuron-

behavior correlations are highly influenced

by, and in somecasesarise solely because

of, variability that is shared among groups

of neurons (Nienborg and Cumming,

2010). If the firing rates of many neurons

rise and fall together, the responses of

any one neuron will be correlated with

behavior because its fluctuations reflect

the activity of a large population. (Such

shared variability is typically quantified as

correlations between the trial-by-trial

fluctuations between pairs of neurons and

referred to as spike count correlation or

noise correlation.) This shared variability

makes it possible to observe neuron-
behavior correlations, but it can also

make such correlations arise artifactually:

a neuron’s response may be correlated

with behavior even if it is not involved in

the underlying computation if its variability

is shared with neurons that contribute to

the behavior. (3) Neuron-behavior correla-

tions are influenced by variability in

external factors such as the visual stimuli

used, the difficulty of the task, or aspects

of the animal’s cognitive state such as its

motivation level.Becauseneuron-behavior

correlations are typically measured in one

neuron per experimental session, day-to-

day variability in these factors might cloud

the dependence of these measurements

on factors such as the neuron’s tuning.

These problems can be mitigated by

using an experimental system for which
Neu
the stimuli, psychophysical task, sensory

responses, motor system, and behavioral

output have been well characterized.

Decision-making in the direction-discrim-

ination task of Britten, Newsome, and col-

leagues fits many of these criteria (Parker

and Newsome, 1998). Even so, neuron-

behavior correlations in this and other

discrimination and detection tasks have

had limited utility for understanding the

algorithm by which information is read

out from sensory areas.

The limitation arises in part because,

although neuronal responses vary over a

large range, the behavioral output in these

tasks is very reduced. MT neurons, for

example, carry information about the

motion direction, speed, binocular

disparity, size, and location of visual stim-

uli (Born and Bradley, 2005), but subjects

in the direction-discrimination task must

simply report whether they saw upward

or downward motion. Because the space

of possible responses to a moving stim-

ulus is reduced to only two options,

many algorithms for reading out informa-

tion from MT would yield identical perfor-

mance on the direction-discrimination

task and identical patterns of neuron-

behavior correlations.

Considering how populations of MT

neurons respond to slightly different

visual stimuli can reveal how difficult it is

to infer readout algorithms from tasks

with a binary behavioral output. The left

panel of Figure 1A shows responses of a

simulated population of MT neurons to a

stimulus moving upward at about 8 deg/

s. When performing the direction-discrim-

ination task of Britten and colleagues

(1996), one could correctly conclude that

the motion was more upward than down-

ward using many different algorithms to

read out the population of MT neurons.

These potential algorithms include deter-

mining the direction tuning of the most

active cells, comparing the average re-

sponses of all neurons tuned for upward

motion with all neurons tuned for down-

ward motion regardless of preferred

speed, comparing the responses of the

upward- and downward-preferring neu-

rons with preferred speeds of 8 deg/s, or

using a number of other algorithms.

Each of these algorithms would lead to

identical upward choices in the direction

discrimination task for many other stimuli,

including a stimulus moving slightly to the
ron 79, July 10, 2013 ª2013 Elsevier Inc. 7
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right of up at a low speed (Figure 1A,

middle panel) or a stimulusmoving slightly

to the left of upward at high speed

(Figure 1A, right).

These algorithms would also lead to

qualitatively indistinguishable neuron-

behavior correlations in a discrimination

task because in MT (and throughout

visual cortex), neurons with similar tuning

typically have more shared variability than

neurons with dissimilar tuning (Cohen and

Kohn, 2011; Huang and Lisberger, 2009).

Under all of the algorithms, the monkey

would report upward motion when some

subset of neurons with near-upward

preferred directions fired more than a

subset of downward-preferring neurons.

On average, neurons with near-upward

preferred directions share more variability

with each other than with downward-

preferring neurons, regardless of whether

they actually contribute to the decision.

Therefore, upward choices would be

associated with high firing rates from up-

ward-preferring neurons and low firing

rates from downward-preferring neurons

under all of those readout algorithms

(see also Nienborg et al., 2012; Shadlen

et al., 1996), making it impossible to differ-

entiate between them.

Hohl et al. (2013), in this issue of

Neuron, realized that these problems us-

ing neuron-behavior correlations to infer

a readout algorithm would be mitigated

in a task with a richer behavioral output.

They trained monkeys to perform a step-

ramp pursuit task that required the ani-

mals to estimate the direction and speed

of a moving stimulus and match it with

their eye velocity. This task therefore re-

quires subjects to identify, rather than

categorize, the direction and speed of a

moving stimulus. Indeed, the monkeys’

eye speed and direction would differen-

tiate between the three stimuli whose re-

sponses are simulated in Figure 1C.

In addition to having a behavioral

output that reflects a continuous estimate

of two aspects of visual motion (speed

and direction), the smooth-pursuit system

has the advantage that its neural sub-

strates in both the sensory and motor do-

mains are particularly well understood. In

particular, the areas involved in planning

and executing pursuit eye movements

have been well studied by this group

and others (for review, see Krauzlis,

2004; Lisberger, 2010). Their previous
8 Neuron 79, July 10, 2013 ª2013 Elsevier In
work suggests that very little behavioral

variability originates in the motor system

and suggests that the primary sources of

behavioral variability are errors in encod-

ing motion information, which probably

occurs in MT (Osborne et al., 2005).

By measuring the correlation between

fluctuations in the responses of MT

neurons with different tuning properties

and fluctuations in the velocity of themon-

keys’ eyes during smooth pursuit, the au-

thors verified that variability in eye velocity

is correlated with variability in MT. They

went on to test the hypothesis that the

pattern of neuron-behavior correlations

would provide information about the algo-

rithm by which motion information is read

out fromMT. They used known patterns of

shared variability within MT (Huang and

Lisberger, 2009) and their own data to

simulate the patterns of neuron-behavior

correlations under several different

readout algorithms.

These methods allowed the authors to

differentiate between potential models of

the readout process. For example,

maximum-likelihood or vector-averaging

models predicted qualitatively different

patterns of neuron-behavior correlations

than normalization or optimal linear de-

coding models. Unlike in discrimination

tasks, comparing neuron-behavior corre-

lations among neurons whose tuning

differed continuously along two dimen-

sions (speed and direction) caused

different models to make qualitatively

different predictions.

Because the authors combined careful

analysis with an experimental system

that provided a rich data set against which

to test different potential readout algo-

rithms, the challenges faced by the au-

thors reveal the areas in which other

experimental and theoretical methods

can complement this approach. As the

authors point out, the models they tested

perform computations based on simple

equations, not with neural responses. In

particular, there is good reason to think

that divisive normalization (comparing a

neuron’s response to the summed

response of a larger population; Carandini

and Heeger, 2012) plays an important role

in calculating velocity to guide pursuit.

However, the neuronal mechanism un-

derlying normalization and the way

normalization affects response variability

are unknown. An important difficulty
c.
of using neuron-behavior correlations

(which are a measure of neuronal and

behavioral variability) to infer readout

mechanisms is that the potential mecha-

nisms describe mean rates and ignore

response variability. It is not clear how

an arithmetic operation like division would

affect variability when computed with

spiking neurons.

Recent theoretical and experimental

advancesmayallow future studies tobuild

on the work of Hohl et al. (2013). For

example, it would be interesting to see

how circuit models predict computations

like normalization will affect neuron-

behavior (or neuron-neuron) correlations.

Incorporating neuron-to-neuron variability

into these models will also be important:

recent work has shown that variability in

something as simple as peak firing rate

can dramatically change the effect of

shared variability on the amount of infor-

mation a group of neurons encodes (Ecker

et al., 2011). Most circuit models predict

different roles for excitatory and inhibitory

neurons, and experimental advances like

optogenetics might make it possible to

measure neuron-behavior correlations

for different cell types. Because neuron-

behavior correlations depend so critically

on the extent to which response variability

is shared among neurons (Nienborg and

Cumming, 2010; Shadlen et al., 1996),

measuring shared variability among

different cell types and between the brain

areas known to be involved in sensing

motion and planning and generating eye

movements will also be important for

inferring readout algorithms.

By using what is currently the experi-

mental system best suited for this type

of analysis, the study by Hohl et al.

(2013) reveals the strengths and also the

limitations of using variability to establish

a link between neurons and behavior.

Besides advancing our specific under-

standing of the relationship between MT

neurons and pursuit eye movements, the

authors have made important testable

predictions that will guide future work.

The recent explosion of new experimental

techniques makes it possible to address

questions about the relationship between

sensory neurons and behavior in new

ways, but it has also highlighted the

need for an established psychophysical

and neuronal system in which to do so.

The study by Hohl et al. (2013) makes a
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compelling case for using their experi-

mental system to pursue these questions.
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A report by Payzan-LeNestour et al. (2013) in this issue of Neuron shows that the human locus coeruleus, a
brain stem nucleus containing cell bodies of noradrenergic neurons, dynamically tracks the level of uncer-
tainty about knowledge of the environment while making decisions.
Our forecasts about the consequences

of our decisions are often uncertain. In

many instances, this uncertainty cannot

be eliminated. A typical example is the

weather forecast, where our mathemat-

ical models are inherently inaccurate.

Nevertheless, because we know how

bad our models are, we can adequately

adapt and take sensible decisions by

embracing this form of uncertainty. Such

known, or ‘‘expected,’’ uncertainties

shape our beliefs about the regularities

in our natural and social environment.

A more challenging scenario occurs

when rules in our environment unexpect-

edly change. One daunting source for

such unexpected uncertainty is global

climate change. It is clear that at some

unpredictable and hence unexpected

time in the not-so-distant future our cur-

rent models will become quite inadequate

and our forecasts more uncertain than
they are now. When this occurs, we will

need to rapidly recognize this state of

increased uncertainty and learn new

models that allow more reliable predic-

tions. It is intuitively evident that the chal-

lenge for our brain is remarkable; it needs

to distinguish whether the uncertainty is

caused because our environment has

changed or because we have not yet

obtained enough samples (or observa-

tions) in an otherwise stable environment.

We don’t need to exhaust examples of

natural disaster to understand that being

able to rapidly adapt to ‘‘unknown un-

knowns‘‘ or ‘‘unexpected uncertainties’’

is a key cognitive feat which expands to

all aspects of decision making given the

dynamic environment in which we live. A

simple example from economic decision

making is depicted in Figure 1.

Despite its ubiquitous importance, we

know surprisingly little about how the hu-
man brain computes unexpected uncer-

tainty and which brain mechanisms are

recruited to adapt to it. In this issue of

Neuron, Payzan-LeNestour et al. (2013)

have now taken a big leap to close this

gap combining a formal treatment of the

different sources of uncertainty (also see

Yu and Dayan, 2005) with fMRI. As de-

picted in Figure 1, expected uncertainty

(or risk) is the irreducible entropy in the

outcome probabilities of a given option.

Another source of uncertainty is estima-

tion uncertainty (or ambiguity) which re-

sults from the lack of knowledge about

the outcome probabilities, e.g., when the

options have not been sampled enough.

Finally, unexpected uncertainty results

from sudden changes in the outcome

probabilities, which calls for a reset in

the learning process. Whereas previous

neuroimaging studies have delineated

the neuronal circuits involved in tracking
ron 79, July 10, 2013 ª2013 Elsevier Inc. 9
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